Skip to main content
Log in

Separable geodesic action slicing in stationary spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A simple observation about the action for geodesics in a stationary spacetime with separable geodesic equations leads to a natural class of slicings of that spacetime whose orthogonal geodesic trajectories represent the world lines of freely falling fiducial observers. The time coordinate function can then be taken to be the observer proper time, leading to a unit lapse function, although the time coordinate lines still follow Killing trajectories to retain the explicitly stationary nature of the coordinate grid. This explains some of the properties of the original Painlevé-Gullstrand coordinates on the Schwarzschild spacetime and their generalization to the Kerr-Newman family of spacetimes, reproducible also locally for the Gödel spacetime. For the static spherically symmetric case the slicing can be chosen to be intrinsically flat with spherically symmetric geodesic observers, leaving all the gravitational field information in the shift vector field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smarr L., York J.W. Jr.: Phys. Rev. D 17, 2529 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  2. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  3. Doran C.: Phys. Rev. D 61, 067503 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. Cook G.B.: Initial Data for Numerical Relativity. Living Rev. Rel. 3, 5 (2000)

    ADS  Google Scholar 

  5. Hamilton A.J.S., Lisle J.P.: Am. J. Phys. 76, 519 (2008)

    Article  ADS  Google Scholar 

  6. Painlevé P.: C. R. Acad. Sci. (Paris) 173, 677 (1921)

    Google Scholar 

  7. Gullstrand A.: Arkiv. Mat. Astron. Fys. 16, 1 (1922)

    Google Scholar 

  8. Carter B.: Commun. Math. Phys. 10, 280 (1968)

    MATH  Google Scholar 

  9. Parikh M.K.: Phys. Lett. B 546, 189 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gourgoulhon, E.: 3+1 Formalism and Bases of Numerical Relativity. arXiv:gr-qc/0703035

  11. Woodhouse N.M.: Commun. Math. Phys. 44, 9 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dietz W.: J. Phys. A: Math. Gen. 9, 519 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  13. Collinson C.D., Fugère J.: J. Phys. A: Math. Gen. 10, 745 (1977)

    Article  ADS  Google Scholar 

  14. Collinson C.D., Fugère J.: J. Phys. A: Math. Gen. 10, 1877 (1977)

    Article  ADS  Google Scholar 

  15. Demianski M., Francaviglia M.: J. Phys. A: Math. Gen. 14, 173 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Koutras A.: Class. Quantum Gravit. 9, 1573 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Houri T., Oota T., Yasui Y.: J. Phys. A 41, 025204 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Yasui, Y., Houri, T.: Hidden Symmetry and Exact Solutions in Einstein Gravity. arXiv:hep-th/1104.0852

  19. Jantzen R.T, Carini P., Bini D.: Ann. Phys. (N.Y.) 215, 1 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. Guven J., N.: Phys. Rev. D 60, 104015 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  21. Beig R., Siddiqui A.A.: Class. Quantum Gravit. 24, 5435 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Herrero A., Morales-Lladosa J.A.: Class. Quantum Gravit. 27, 175007 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  23. Hemming S., Keski-Vakkuri E.: Phys. Rev. D 64, 044006 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  24. Garat A., Price R.H.: Phys. Rev. D 61, 124011 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  25. Valiente Kroon J.A.: Class. Quantum Gravit. 21, 3237 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Valiente Kroon J.A.: Phys. Rev. Lett. 92, 041101 (2004)

    Article  MathSciNet  Google Scholar 

  27. Natário J.: Gen. Relativ. Gravit. 41, 2579 (2009)

    Article  ADS  MATH  Google Scholar 

  28. Gödel K.: Rev. Mod. Phys. 21, 447 (1949)

    Article  ADS  MATH  Google Scholar 

  29. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  30. Bini D., Jantzen R.T., Miniutti G.: Class. Quantum Gravit. 18, 4969 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. de Felice F., Bini D.: Classical Measurements in Curved Space-times. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, D., Geralico, A. & Jantzen, R.T. Separable geodesic action slicing in stationary spacetimes. Gen Relativ Gravit 44, 603–621 (2012). https://doi.org/10.1007/s10714-011-1295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1295-2

Keywords

Navigation