Skip to main content
Log in

Spherically symmetric solution in a space–time with torsion

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

By using the method of group analysis, we obtain a new exact evolving and spherically symmetric solution of the Einstein–Cartan equations of motion, corresponding to a space–time threaded with a three-form Kalb–Ramond field strength. The solution describes in its more generic form, a space–time which scalar curvature vanishes for large distances and for large time. In static conditions, it reduces to a classical wormhole solution and to a exact solution with a localized scalar field and a torsion kink, already reported in literature. In the process we have found evidence towards the construction of more new solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marchesano F.: Fortsch. Phys. 55, 491 (2007) [arXiv:hep-th/0702094]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Grana M.: Phys. Rept. 423, 91 (2006) [arXiv:hep-th/0509003]

    Article  MathSciNet  ADS  Google Scholar 

  3. Samtleben H.: Class. Quant. Gravit. 25, 214002 (2008) [arXiv:0808.4076 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  4. Hristov K., Looyestijn H., Vandoren S.: JHEP. 1008, 103 (2010) [arXiv:1005.3650 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  5. Hristov K., Looyestijn H., Vandoren S.: JHEP. 0911, 115 (2009) [arXiv:0909.1743 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  6. Majumdar P., SenGupta S.: Class. Quantum Grav. 16, L89–L94 (1999) [arXiv:gr-qc/9906027v2]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. de Sabbata V., Sivaram C.: Spin Torsion and Gravitation. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  8. Raychaudhuri A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  9. Giovanni M.: Phys. Rev. D 59, 063503 (1999) [arXiv:hep-th/9809185v1]

    Article  ADS  Google Scholar 

  10. Durrer R., Sakellariadou M.: Phys. Rev. D 62, 123504 (2000) [arXiv:hep-ph/0003112v1]

    Article  ADS  Google Scholar 

  11. Shapiro I.L.: Phys. Rep. 357, 113 (2002) [arXiv:hep-th/0103093v1], and references therein

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hehl F., von der Heyde P., Kerlick G., Nester J.: Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  13. Wald M.R.: General Relativity. University of Chicago Press, Chicago (1986)

    Google Scholar 

  14. Kar S., Majumdar P., SenGupta S., Sinha A.: Eur. Phys. J. C23, 357 (2002)

    ADS  Google Scholar 

  15. Kar S., Majumdar P., SenGupta S., Sur S.: Class. Quan. Gravit. 19, 677 (2002) [arXiv:hep-th/0109135v1]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kar S., SenGupta S., Sur S.: Phys. Rev. D 67, 044005 (2003) [arXiv:hep-th/0210176v2]

    Article  MathSciNet  ADS  Google Scholar 

  17. SenGupta S., Sur S.: Phys. Lett. B 521, 350–356 (2001) [arXiv:gr-qc/0102095v1]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Rahaman F., Kalam M., Ghosh A.: Nuovo Cim. 121B, 303–307 (2006) [arXiv:gr-qc/0605095v1]

    MathSciNet  ADS  Google Scholar 

  19. Ralston J.P., Nodland B.: AIP Conf. Proc. 412, 432–437 (1997) [arXiv:astro-ph/9708114v2]

    ADS  Google Scholar 

  20. Nodland B., Ralston J.P.: Phys. Rev. Lett. 78, 3043–3046 (1997) [arXiv:astro-ph/9704196v1]

    Article  ADS  Google Scholar 

  21. Nodland B., Ralston J.P.: Phys. Rev. Lett. 79, 1958 (1997) [arXiv:astro-ph/9705190v2]

    Article  ADS  Google Scholar 

  22. Kostelecky V.A., Russell N., Tasson J.: Phys. Rev. Lett. 100, 111102 (2008) [arXiv:0712.4393 [gr-qc]]

    Article  ADS  Google Scholar 

  23. Heckel B.R., Adelberger E.G., Cramer C.E., Cook T.S., Schlamminger S., Schmidt U.: Phys. Rev. D 78, 092006 (2008) [arXiv:0808.2673 [hep-ex]]

    Article  ADS  Google Scholar 

  24. Ovsiannikov L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  25. Senashov S., Yakhno A.: Aplicación de Simetrías y Leyes de Conservación a la Resolución de Ecuaciones Diferenciales de Mecánica. Universidad de Guadalajara, México (2008) (in Spanish)

    Google Scholar 

  26. Ibragimov N.H.: Transformation Groups Applied to Mathematical Physics. Reidel, Dordrecht (1985)

    MATH  Google Scholar 

  27. Ibragimov N.H.: Handbook of Lie Group Analysis of Differential Equations. CRC Press, New York (1996)

    MATH  Google Scholar 

  28. Olver P.J.: Applications of Lie Groups to Differential Equations. 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  29. Grundland A.M., Tafel J.: Class. Quan. Gravit. 10, 2337 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Garcia-Salcedo, R., Loaiza-Brito, O., Moreno, C.: (work in progress)

  31. Patera J., Winternitz P.: J. Math. Phys. 18, 1449 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Loaiza-Brito O., Oda K.y.: JHEP. 0708, 002 (2007) [arXiv:hep-th/0703033]

    Article  MathSciNet  ADS  Google Scholar 

  33. Baekler P., Mielke E.W., Hecht R., Hehl F.W.: Nucl. Phys. B 288, 800 (1987)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo García-Salcedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farfán, F., García-Salcedo, R., Loaiza-Brito, O. et al. Spherically symmetric solution in a space–time with torsion. Gen Relativ Gravit 44, 535–553 (2012). https://doi.org/10.1007/s10714-011-1293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1293-4

Keywords

Navigation