Skip to main content
Log in

Detailed study of null and timelike geodesics in the Alcubierre warp spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The geodesic equation of the Alcubierre warp spacetime is converted into its non-affinely parametrized form for a detailed discussion of the motion of particles and the visual effects as observed by a traveller inside the warp bubble or a person looking from outside. To include gravitational lensing for point-like light sources, we present a practical approach using the Jacobi equation and the Sachs bases. Additionally, we consider the dragging and geodesic precession of particles due to the warp bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morris M.S., Thorne K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395–412 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  2. Alcubierre M.: The warp drive: hyper-fast travel within general relativity. Class. Quantum Grav. 11, L73–L77 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  3. Clark C., Hiscock W.A., Larson S.L.: Null geodesics in the Alcubierre warp-drive spacetime: the view from the bridge. Class. Quantum Grav. 16, 3965–3972 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Weiskopf, D.: Four-dimensional non-linear ray tracing as a visualization tool for gravitational physics.In: Proceedings of the IEEE Conference on Visualization, IEEE Computer Society Press, 2000, pp. 445–448

  5. Hiscock W.A.: Quantum effects in the Alcubierre warp-drive spacetime. Class. Quantum Grav. 14, L183–L188 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  6. Pfenning M.J., Ford L.H.: The unphysical nature of ‘warp drive’. Class. Quantum Grav. 14, 1743–1751 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. van den Broeck C.: A ‘warp drive’ with more reasonable total energy requirements. Class. Quantum Grav. 16, 3973–3979 (1999)

    Article  ADS  MATH  Google Scholar 

  8. Lobo F.S.N., Visser M.: Fundamental limitations on ‘warp drive’ spacetimes. Class. Quantum Grav. 21, 5871–5892 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Müller T., Grave F.: GeodesicViewer—a tool for exploring geodesics in the theory of relativity. Comput. Phys. Commun. 181, 413–419 (2010)

    Article  ADS  MATH  Google Scholar 

  10. Wald R.M.: General relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  11. Schneider P., Ehlers J., Falco E.E.: Gravitational Lenses. Springer, Berlin (1992)

    Book  Google Scholar 

  12. The Milky Way panorama is by ESO/S. Brunier, http://www.eso.org/public/images/eso0932a

  13. Weiskopf D., Kraus U., Ruder H.: Searchlight and doppler effects in the visualization of special relativity: a corrected derivation of the transformation of radiance. ACM Trans. Graph. 18, 278–292 (1999)

    Article  Google Scholar 

  14. Nwankwo, A., Thompson, J., Ishak, M.: Luminosity distance and redshift in the Szekeres inhomogeneous cosmological models. arXiv:1005.2989v1 [astro-ph]

  15. Rindler W.: Relativity—Special, General and Cosmology. Oxford University Press, Oxford (2001)

    Google Scholar 

  16. GNU Scientific Library (GSL), http://www.gnu.org/software/gsl

  17. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T., Weiskopf, D. Detailed study of null and timelike geodesics in the Alcubierre warp spacetime. Gen Relativ Gravit 44, 509–533 (2012). https://doi.org/10.1007/s10714-011-1289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1289-0

Keywords

Navigation