Skip to main content
Log in

Intrinsic vanishing of energy and momenta in a universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a new approach to the question of properly defining energy and momenta for non asymptotically Minkowskian spaces in General Relativity, in the case where these energy and momenta are conserved. In order to do this, we first prove that there always exist some special Gauss coordinates for which the conserved linear and angular 3-momenta intrinsically vanish. This allows us to consider the case of creatable universes (the universes whose proper 4-momenta vanish) in a consistent way, which is the main interest of the paper. When applied to the Friedmann-Lemaître-Robertson-Walker case, perturbed or not, our formalism leads to previous results, according to most literature on the subject. Some future work that should be done is mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szabados, L.B.: Living Rev. Relativ. 12, 4. Update of lrr-2004-4 (2009)

  2. Katz J., Bic̆ák J., Lynden-Bell D.: Phys. Rev. D 55, 5957 (1997) See also gr-qc/0504041 for some corrected misprints

    Article  MathSciNet  ADS  Google Scholar 

  3. Nester J.M.: Class. Quantum Grav. 21, S261–S280 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Brown J.D., York J.W. Jr: Phys. Rev. D 47, 1407 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Hawking S.W., Horowitz G.: Class. Quantum Grav. 13, 1487 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Silva S.: Nucl. Phys. B 558, 391 (1999)

    Article  ADS  MATH  Google Scholar 

  7. Fatibene L., Ferraris M., Francaviglia M.: Int. J. Geom. Methods Mod. Phys. 2, 373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bibbona E., Fatibene L., Francaviglia M.: Int. J. Geom. Methods Mod. Phys. 6, 1193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hayward S.A.: Phys. Rev. D 49, 831 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  10. Cooperstook F.I.: Gen. Relativ. Gravit. 26, 323 (1994)

    Article  ADS  Google Scholar 

  11. Chang C-C., Nester J.M., Chen C-M.: Phys. Rev. Lett. 83, 1897 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Vargas T.: Gen. Relativ. Gravit. 36, 1255 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Chen C.-M., Liu J.-L., Nester J.M.: Mod. Phys. Lett. A. 22, 2039 (2007)

    Article  ADS  MATH  Google Scholar 

  14. Carini M., Fatibene L., Francaviglia M.: Int. J. Geom. Methods Mod. Phys. 4, 907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferrando J.J., Lapiedra R., Morales J.A.: Phys. Rev. D 75, 124003 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Weinberg S.: Gravitation and Cosmology, Chapter 5, epigraph 6. Wiley, London (1972)

    Google Scholar 

  17. Murchadha N.Ó.: J. Math. Phys. 27, 2111 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Alcubierre M.: Introduction to 3 + 1 Numerical Relativity. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  19. Banerjee N., Sen S.: Pramana J. Phys. 49, 609 (1997)

    Article  ADS  Google Scholar 

  20. Xulu S.S.: Int. J. Theor. Phys. 39, 1153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nester J.M., So L.L., Vargas T.: Phys. Rev. D 78, 044035 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  22. Pitts J.B.: Gen. Relativ. Gravit. 42, 601 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Albrow M.G.: Nature 241, 56 (1973)

    ADS  Google Scholar 

  24. Tryon E.P.: Nature 246, 396 (1973)

    Article  ADS  Google Scholar 

  25. Lapiedra R., Sáez D.: Phys. Rev. D 77, 104011 (2008)

    Article  ADS  Google Scholar 

  26. Lapiedra R., Morales-Lladosa J.A.: J. Phys. Conf. Ser. 229, 012053 (2010)

    Article  ADS  Google Scholar 

  27. Landau L., Lifchitz E.M.: The Classical Theory of Fields. Pergamon Press, New York (1962)

    MATH  Google Scholar 

  28. Poisson E.: A Relativistic Toolkit, The Mathematics of Black Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  29. Rosen N.: Gen. Relativ. Gravit. 26, 319 (1994)

    Article  ADS  Google Scholar 

  30. Garecki J.: Gen. Relativ. Gravit. 27, 55 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Garecki J.: Acta Phys. Pol. 39, 781 (2008)

    MathSciNet  ADS  Google Scholar 

  32. Mitra A.: Gen. Relativ. Gravit. 42, 443 (2010)

    Article  ADS  MATH  Google Scholar 

  33. Berman S.A.: Int. J. Theor. Phys. 48, 3278 (2009)

    Article  MATH  Google Scholar 

  34. Afshar M.M.: Class. Quantum Grav. 26, 225005 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  35. Faraoni V., Cooperstock F.I.: Astrophys. J. 587, 483 (2003)

    Article  ADS  Google Scholar 

  36. Lachièze-Rey M., Luminet J.P.: Phys. Rep. 254, 135 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  37. Jaffe T.R., Banday A.J, Eriksen H.K., Górski K.M., Hansen F.K.: Astrophys. J. 629, L1 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Morales-Lladosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapiedra, R., Morales-Lladosa, J.A. Intrinsic vanishing of energy and momenta in a universe. Gen Relativ Gravit 44, 367–389 (2012). https://doi.org/10.1007/s10714-011-1283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1283-6

Keywords

Navigation