Skip to main content
Log in

Static observers in curved spaces and non-inertial frames in Minkowski spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Static observers in curved spacetimes may interpret their proper acceleration as the opposite of a local gravitational field (in the Newtonian sense). Based on this interpretation and motivated by the equivalence principle, we are led to investigate congruences of timelike curves in Minkowski spacetime whose acceleration field coincides with the acceleration field of static observers of curved spaces. The congruences give rise to non-inertial frames that are examined. Specifically, we find, based on the locality principle, the embedding of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit form for arbitrary acceleration fields. We also determine, from the Einstein equations, a covariant field equation that regulates the behavior of the proper acceleration of static observers in curved spacetimes. It corresponds to an exact relativistic version of the Newtonian gravitational field equation. In the specific case in which the level surfaces of the norm of the acceleration field of the static observers are maximally symmetric two-dimensional spaces, the energy–momentum tensor of the source is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misner C., Thorne K., Wheeler J.A.: Gravitation. W.H. Freeman and Company, New York (1973)

    Google Scholar 

  2. Rindler W.: Am. J. Phys. 34, 1174–1178 (1975)

    Article  ADS  Google Scholar 

  3. Mashhoon, B.: The hypothesis of locality and its limitation. gr-qc/0303029

  4. Longhi G.: Found. Phys. 19, 201–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Marzlin K.: Phys. Lett. A 215, 1–6 (1996)

    Article  ADS  Google Scholar 

  6. Letaw J.R., Pfautsch J.D.: J. Math. Phys. 23, 425 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Gao S., Kuang Z., Liang C.: J. Math. Phys. 39, 2862 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Pauri M., Vallisneri M.: Found. Phys. Lett. 13, 401 (2000)

    Article  MathSciNet  Google Scholar 

  9. Alba, D., Lusanna, L.: Simultaneity, radar 4 coordinates and the (3+1) point of view about accelerated observers in special relativity. gr-qc/0311058

  10. Alba D., Lusanna L.: Int. J. Mod. Phys. D 16, 1149–1186 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Alba D., Lusanna L.: Int. J. Geom. Methods Mod. Phys. 7, 33–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bini D., Lusanna L., Mashhoon B.: Int. J. Mod. Phys. D 14, 1413 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bini D., Geralico A., Ruggiero M.L., Tartaglia A.: Class. Quant. Grav. 25, 205011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Minguzzi, E.: gr-qc/0506127

  15. Minguzzi E.: Am. J. Phys. 73, 1117–1121 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. Minguzzi E.: Class. Quant. Grav. 21, 4123–4146 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Minguzzi E.: Class. Quant. Grav. 20, 2443–2456 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Huang C.-G., Guo H.-Y.: Int. J. Mod. Phys. D 15, 1035–1046 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Lachiéze-Rey, M.: Space and spacetime. In: AIP Conference Proceedings 668 (2002)

  20. da Silva P.J.F., Dahia F.: Int. J. Mod. Phys. A 22, 2383–2393 (2007)

    Article  MATH  Google Scholar 

  21. Huang C.-G., Sun J.-R.: Commun. Theor. Phys. 49, 928–932 (2008)

    Article  ADS  Google Scholar 

  22. do Carmo M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  23. Abramowicz M.A., Nurowski P., Wex N.: Class. Quant. Grav. 10, L183–6 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  24. Sonego S., Massar M.: Class. Quant. Grav. 13, 139–144 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Carroll S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  26. Wald R.: General Relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  27. Seahra S.S., Wesson P.S.: Class. Quant. Grav. 20, 1321–1340 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. McManus D.J., Coley A.A.: Class. Quant. Grav. 11, 2045–2058 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Jensen L.G., Ruback P.J.: Nucl. Phys. B 325, 660 (1989)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dahia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahia, F., da Silva, P.J.F. Static observers in curved spaces and non-inertial frames in Minkowski spacetime. Gen Relativ Gravit 43, 269–292 (2011). https://doi.org/10.1007/s10714-010-1086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1086-1

Keywords

Navigation