Skip to main content
Log in

Phenomenological covariant approach to gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We covariantly modify the Einstein–Hilbert action such that the modified action perturbatively resolves the anomalous rotational velocity curve of the spiral galaxies and gives rise to the Tully–Fisher relation, and dynamically generates the cosmological constant. This modification requires introducing a single new universal parameter. It requires inclusion of neither dark matter nor dark energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobouti, Y., Hasani Zonoozi, A., Haghi, H.: Tully–Fisher relation, key to dark matter companion of baryonic matter. Astron. Astrophys. 507, 635 (2009). arXiv:0906.0668 [gr-qc]

    Google Scholar 

  2. Sobouti, Y.: Dark companion of baryonic matter—logarithmic potentials are inherent to GR. arXiv:0812.4127 [gr-qc]

  3. Sobouti, Y.: Dark companion of baryonic matter. arXiv:0810.2198 [gr-qc]

  4. Rubin, V., Thonnard, N., Ford, W.K.: Rotational properties of 21 Sc galaxies with a large range of luminosities and radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophys. J. 238 (1980). doi:P10.1086/158003

  5. Persic M., Salucci P., Stel F.: The Universal rotation curve of spiral galaxies: 1. The dark matter connection. Mon. Not. Roy. Astron. Soc. 281, 27 (1996) arXiv:astro-ph/9506004

    ADS  Google Scholar 

  6. Borriello A., Salucci P.: The dark matter distribution in disk galaxies. Mon. Not. Roy. Astron. Soc. 323, 285 (2001) arXiv:astro-ph/0001082

    Article  ADS  Google Scholar 

  7. Salucci P., Lapi A., Tonini C., Gentile G., Yegorova I., Klein U.: The universal rotation curve of spiral galaxies. II: The dark matter distribution out to the virial radius. Mon. Not. Roy. Astron. Soc. 378, 41 (2007) arXiv:astro-ph/0703115

    Article  ADS  Google Scholar 

  8. Tully R.B., Fisher J.R.: A new method of determining distances to galaxies. Astron. Astrophys. 54, 661 (1977)

    ADS  Google Scholar 

  9. Sotiriou T.P., Faraoni V.: (R) Theories of gravity. Rev. Mod. Phys. 82, 451 (2010) arXiv:0805.1726 [gr-qc]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Li B., Barrow J.D., Mota D.F.: The cosmology of modified Gauss-Bonnet gravity. Phys. Rev. D 76, 044027 (2007) arXiv:0705.3795 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  11. Exirifard Q.: Constraints on f(R ijkl R ijkl) gravity: an evidence against the covariant resolution of the Pioneer anomaly. Classical Quant. Grav. 26, 025001 (2009) arXiv:0708.0662 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  12. Tsamis N.C., Woodard R.P.: A phenomenological model for the early universe. Phys. Rev. D 80, 083512 (2009) arXiv:0904.2368 [gr-qc]

    Article  ADS  Google Scholar 

  13. Milgrom M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  14. Milgrom M.: A modification of the Newtonian dynamics: implications for galaxies. Astrophys. J. 270, 371 (1983)

    Article  ADS  Google Scholar 

  15. Bekenstein, J.D.: The modified Newtonian dynamics-MOND-and its implications for new physics. arXiv:astro-ph/0701848

  16. Begeman K.G., Broeils A.H., Sanders R.H.: Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc. 249, 523 (1991)

    ADS  Google Scholar 

  17. Palais R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Jacobson T.: When is g tt g rr =  −1? Class. Quant. Grav. 24, 5717 (2007) arXiv:0707.3222 [gr-qc]

    Article  MATH  ADS  Google Scholar 

  19. Blau, M.: Lecture Notes on General Relativity. http://www.blau.itp.unibe.ch/lecturesGR.ps.gz

  20. Tegmark, M., et al. [SDSS Collaboration]: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). arXiv:astro-ph/0310723

    Google Scholar 

  21. Capozziello S., Cardone V.F., Troisi A.: Dark energy and dark matter as curvature effects. JCAP 0608, 001 (2006) arXiv:astro-ph/0602349

    ADS  Google Scholar 

  22. Capozziello S., Cardone V.F., Troisi A.: Low surface brightness galaxies rotation curves in the low energy limit of R n gravity: no need for dark matter?. Mon. Not. Roy. Astron. Soc. 375, 1423 (2007)

    Article  ADS  Google Scholar 

  23. Boehmer C.G., Harko T., Lobo F.S.N.: Dark matter as a geometric effect in f(R) gravity. Astropart. Phys. 29, 386 (2008) arXiv:0709.0046 [gr-qc]

    Article  ADS  Google Scholar 

  24. Clowe D. et al.: A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109 (2006)

    Article  ADS  Google Scholar 

  25. Jee M.J. et al.: Discovery of a ring like dark matter structure in the core of the galaxy cluster Cl 0024+17. Astrophys. J. 661, 728–749 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasem Exirifard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exirifard, Q. Phenomenological covariant approach to gravity. Gen Relativ Gravit 43, 93–106 (2011). https://doi.org/10.1007/s10714-010-1073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1073-6

Keywords

Navigation