Skip to main content
Log in

Phenomenological gravitational radiation from rotating stellar collapse to an intermediate mass Kerr black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Intermediate mass black holes may be formed through repeated coalescences of compact objects or through the direct collapse of a hypermassive star formed through runaway collisions of main sequence stars. The gravitational wave signature of these two formation scenarios will be different. Here we present an initial study of the waveform generated during the direct axisymmetric collapse of a hypermassive star in order to facilitate searches for this source. We approximate the collapse of the core as an axisymmetric Newtonian free-fall of a rotating relativistic degenerate iron core. The collapse waveform can be reasonably well modeled by an exponential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ott C.: The gravitational-wave signature of core-collapse supernovae. CQG 26, 063001 (2009)

    Article  ADS  Google Scholar 

  2. Portegies Zwart S.F., McMillan S.L.W.: The runaway growth of intermediate-mass black holes in dense star clusters. ApJ 576, 899 (2002)

    Article  ADS  Google Scholar 

  3. Soria, R.: Runaway core collapse and cluster survival: where are the parent clusters of ULXs? In: Chen P., Bloom E., Madejski G., Patrosian V.(eds) Proceedings of the XXII Texas symposium on relativistic astrophysics at Stanford University, eConf. C041213 (2004)

  4. Freitag M., Rasio F.A., Baumgart H.: Runaway collisions in young star clusters: I. Methods and tests. MNRAS 368, 121 (2006)

    ADS  Google Scholar 

  5. Freitag M., Gurkan M.A., Rasio F.A.: Runaway collisions in young star clusters: II. Numerical results. MNRAS 368, 141 (2006)

    ADS  Google Scholar 

  6. Suzuki T.K., Nakasato N., Baumgardt H., Ibukiyama A., Makino J., Ebisuzaki T.: Evolution of collisionally merged massive stars. ApJ 668, 435 (2007)

    Article  ADS  Google Scholar 

  7. Yungelson L.R., van den Heuvel E.P.J., Vink J.S., Portegies Zwart S.F., de Koter A.: On the evolution and fate of super-massive stars. Astron. Astrophys. 477, 223 (2008)

    Article  ADS  Google Scholar 

  8. Saenz R.A., Shapiro S.L.: Gravitational radiation from stellar collapse: ellipsoidal models. ApJ 221, 286 (1978)

    Article  ADS  Google Scholar 

  9. Saenz R.A., Shapiro S.L.: Gravitational and neutrino radiation from stellar core collapse: improved ellipsoidal model calculations. ApJ 229, 1107 (1979)

    Article  ADS  Google Scholar 

  10. Detweiler S., Lindblom L.: On the evolution of the homogeneous ellipsoidal figures. II. Gravitational collapse and gravitational radiation. ApJ 250, 739 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  11. Goggin L.M.: A search for gravitaional waves from perturbed black hole ringdowns in LIGO data. California Institude of Technology, USA (2007)

    Google Scholar 

  12. Abbot B. et al.: Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. PRD 80, 062001 (2009)

    Article  ADS  Google Scholar 

  13. Binney J., Tremaine S.: Galactic dynamics, Princeton series in Astrophsics princeton. Princeton University Press, New Jersey (1987)

    Google Scholar 

  14. Zel’dovich Ya.B., Novikov I.D.: Relativistic Astrophysics, Vol 1: Stars and Relativity. University of Chicago Press, Chicago (1971)

    Google Scholar 

  15. Shapiro S.L., Teukolsky S.A.: Black holes, white dwarfs, and neutron stars. Wiley, New York (1983)

    Book  Google Scholar 

  16. Padmanabhan T.: Theoretical astrophysics, Vol @: stars and stellar systems. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Carroll B.W., Ostlie D.A.: An Introduction to Modern Astrophysics, 2nd edn. Pearson/Addison Wesley, San Francisco (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Benacquista, M. Phenomenological gravitational radiation from rotating stellar collapse to an intermediate mass Kerr black hole. Gen Relativ Gravit 42, 2511–2523 (2010). https://doi.org/10.1007/s10714-010-1001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1001-9

Keywords

Navigation