Skip to main content
Log in

Imitating accelerated expansion of the Universe by matter inhomogeneities: corrections of some misunderstandings

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A number of misunderstandings about modeling the apparent accelerated expansion of the Universe and about the ‘weak singularity’ are clarified: (1) Of the five definitions of the deceleration parameter given by Hirata and Seljak (HS), only q 1 is a correct invariant measure of acceleration/deceleration of expansion. The q 3 and q 4 are unrelated to acceleration in an inhomogeneous model. (2) The averaging over directions involved in the definition of q 4 does not correspond to what is done in observational astronomy. (3) HS’s equation (38) connecting q 4 to the flow invariants gives self-contradictory results when applied at the centre of symmetry of the Lemaître–Tolman (L–T) model. The intermediate equation (31) that determines q 3' is correct, but approximate, so it cannot be used for determining the sign of the deceleration parameter. Even so, at the centre of symmetry of the L–T model, it puts no limitation on the sign of q 3'(0). (4) The ‘weak singularity’ of Vanderveld et al. is a conical profile of mass density at the centre—a perfectly acceptable configuration. (5) The so-called ‘critical point’ in the equations of the ‘inverse problem’ for a central observer in an L–T model is a manifestation of the apparent horizon (AH)—a common property of the past light cones in zero-lambda L–T models, perfectly manageable if the equations are correctly integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanderveld R.A., Flanagan E.E., Wasserman I.: Phys. Rev. D 74, 023506 (2006)

    Article  ADS  Google Scholar 

  2. Hirata C.M., Seljak U.: Phys. Rev. D 72, 083501 (2005)

    Article  ADS  Google Scholar 

  3. Iguchi H., Nakamura T., Nakao K.: Progr. Theor. Phys. 108, 809 (2002)

    Article  MATH  ADS  Google Scholar 

  4. Lemaître, G.: Ann. Soc. Sci. Bruxelles A53, 51 (1933); English translation, with historical comments: Gen. Relativ. Gravit. 29, 637 (1997)

  5. Tolman, R.C..: Proc. Nat. Acad. Sci. USA 20, 169 (1933); reprinted, with historical comments: Gen. Relativ. Gravit. 29, 931 (1997)

  6. Tipler F.: Phys. Lett. 64A, 8 (1977)

    MathSciNet  ADS  Google Scholar 

  7. Ellis, G.F.R.: In: Sachs, R.K. (ed.) Proceedings of the International School of Physics ‘Enrico Fermi’, Course 47: General Relativity and Cosmology, pp. 104–182. Academic Press, New York, (1971), reprinted, with historical comments, in Gen. Relativ. Gravit. 41, 581 (2009)

  8. Hoyle F.: Cosmological tests of gravitational theories. In: Moller, C. (eds) Proc. Enrico Fermi School of Physics, Course XX, Varenna, “Evidence for Gravitational Theories”, pp. 141–174. Academic Press, New York (1961)

    Google Scholar 

  9. McCrea W.E.: Observable Relations in Relativistic Cosmology. Zeits. Astrophys. 9, 290–314 (1934)

    ADS  Google Scholar 

  10. Lu T.H.-C., Hellaby C.: Obtaining the spacetime metric from cosmological observations. Class. Quant. Grav. 24, 4107–4131 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Hellaby C.: The mass of the cosmos. Mon. Not. Roy. Astron. Soc. 370, 239–244 (2006)

    ADS  Google Scholar 

  12. McClure M.L., Hellaby C.: Determining the metric of the cosmos: stability, accuracy, and consistency. Phys. Rev. D 78, 044005 (2008)

    Article  ADS  Google Scholar 

  13. Riess A.G., Filippenko A.V., Challis P., Clocchiatti A., Diercks A., Garnavich P.M., Gilliland R.L., Hogan C.J., Jha S., Krishner R.P., Leibundgut B., Phillips M.M., Reiss D., Schmidt B.P., Schommer R.A., Smith R.C., Spyromilio J., Stubbs C., Suntzeff N.B., Tonry J.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  14. Perlmutter S., Aldering G., Goldhaber G., Knop R.A., Nugent P., Castro P.G., Deustua S., Fabbro S., Goobar A., Groom D.E., Hook I.M., Kim A.G., Kim M.Y., Lee L.C., Nunes N.J., Pain R., Pennypacker C.R., Quimby R., Lidman C., Ellis R.S., Irwin M., McMahon R.G., Ruiz-Lapuente P., Walton N., Schaefer B., Boyle B.J., Filippenko A.V., Matheson T., Fruchter A.S., Panagia N., Newberg H.J.M., Couch W.J.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  15. Krasiński A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Plebański J., Krasiński A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  17. Bondi, H.: Mon. Not. Roy. Astron. Soc. 107, 410 (1947); reprinted, with historical comments, in Gen. Relativ. Gravit. 31, 1777 (1999)

  18. Flanagan E.E.: Phys. Rev. D 71, 103521 (2005)

    Article  ADS  Google Scholar 

  19. Barausse E., Matarrese S., Riotto A.: Phys. Rev. D 71, 063537 (2005)

    Article  ADS  Google Scholar 

  20. Goldberg, J., Sachs, R.K.: Acta Phys. Polon. 22 (Suppl.), 13 (1962); reprinted, with historical comments, in Gen. Relativ. Gravit. 41, 433 (2009)

  21. Synge J.L.: Relativity: The General Theory. North-Holland, Amsterdam (1960)

    MATH  Google Scholar 

  22. Visser M.: Phys. Rev. D 47, 2395 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  23. Navarro J.F., Frenk C.S., White S.D.: Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  24. Célérier M.N.: Astron. Astrophys. 353, 63 (2000)

    Google Scholar 

  25. Mustapha N., Hellaby C., Ellis G.F.R.: Mon. Not. R. Astron. Soc. 292, 817 (1997)

    ADS  Google Scholar 

  26. Hellaby C., Lake K.: Astrophys. J. 290, 381 (1985) + erratum Astrophys. J. 300, 461 (1986)

    Google Scholar 

  27. Mustapha N., Hellaby C.: Gen. Relativ. Gravit. 33, 455 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Humphreys, N.P., Maartens, R., Matravers, D.R.: arXiv:gr-qc/9804023 (1998)

  29. Hellaby C., Alfedeel A.H.A.: Phys. Rev. D 79, 043501 (2009)

    Article  ADS  Google Scholar 

  30. Hellaby, C.: Some Properties of Singularities in the Tolman Model. PhD Thesis, Queen’s University, Kingston, Ontario. http://www.mth.uct.ac.za/~cwh/CWH_PhD.pdf (1985)

  31. Hellaby C.: Class. Quant. Grav. 4, 635 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Krasiński A., Hellaby C.: Phys. Rev. D 69, 043502 (2004)

    Article  ADS  Google Scholar 

  33. Alnes H., Amarzguioui M., Grøn Ø.: Phys.Rev. D 73, 083519 (2006)

    Article  ADS  Google Scholar 

  34. Hellaby, C.: Modelling Inhomogeneity in the Universe. In: 5th International School on Field Theory and Gravitation, Cuiabá, Brazil, 20–24 April 2009, Proc. Sci. PoS(ISFTG)005 (2009)

  35. Araújo, M.E., Stoeger, W.R.: arXiv:0705.1846 [astro-ph] (2007)

  36. Chung D.J.H., Romano A.E.: Phys. Rev. D 74, 103507 (2006)

    Article  ADS  Google Scholar 

  37. Hellaby C., Lake K.: Astrophys. J. 282, 1–10 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  38. Bolejko K., Wyithe J.S.B.: J. Cosm. Astropart. Phys. 02, 020 (2009)

    Article  ADS  Google Scholar 

  39. Yoo C.M., Kai T., Nakao K-I.: Prog. Theor. Phys. 120, 937 (2008)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Krasiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasiński, A., Hellaby, C., Bolejko, K. et al. Imitating accelerated expansion of the Universe by matter inhomogeneities: corrections of some misunderstandings. Gen Relativ Gravit 42, 2453–2475 (2010). https://doi.org/10.1007/s10714-010-0993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-0993-5

Keywords

Navigation