General Relativity and Gravitation

, Volume 42, Issue 4, pp 929–974 | Cite as

A kinematical approach to conformal cosmology

Research Article

Abstract

We present an alternative cosmology based on conformal gravity, as originally introduced by H. Weyl and recently revisited by P. Mannheim and D. Kazanas. Unlike past similar attempts our approach is a purely kinematical application of the conformal symmetry to the Universe, through a critical reanalysis of fundamental astrophysical observations, such as the cosmological redshift and others. As a result of this novel approach we obtain a closed-form expression for the cosmic scale factor R(t) and a revised interpretation of the space–time coordinates usually employed in cosmology. New fundamental cosmological parameters are introduced and evaluated. This emerging new cosmology does not seem to possess any of the controversial features of the current standard model, such as the presence of dark matter, dark energy or of a cosmological constant, the existence of the horizon problem or of an inflationary phase. Comparing our results with current conformal cosmologies in the literature, we note that our kinematic cosmology is equivalent to conformal gravity with a cosmological constant at late (or early) cosmological times. The cosmic scale factor and the evolution of the Universe are described in terms of several dimensionless quantitites, among which a new cosmological variable δ emerges as a natural cosmic time. The mathematical connections between all these quantities are described in details and a relationship is established with the original kinematic cosmology by L. Infeld and A. Schild. The mathematical foundations of our kinematical conformal cosmology will need to be checked against current astrophysical experimental data, before this new model can become a viable alternative to the standard theory.

Keywords

Conformal gravity Conformal cosmology Kinematic cosmology Dark matter Dark energy General relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turner M.S., Tyson J.A.: Rev. Mod. Phys. 71, S145 (1999) astro-ph/9901113CrossRefADSGoogle Scholar
  2. 2.
    Freedman W.L., Turner M.S.: Rev. Mod. Phys. 75, 1433 (2003) astro-ph/0308418CrossRefADSGoogle Scholar
  3. 3.
    Yao W.M. et al.: (Particle Data Group). J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Perlmutter S. et al.: (Supernova Cosmology Project). Astrophys. J. 517, 565 (1999) astro-ph/9812133CrossRefADSGoogle Scholar
  5. 5.
    Riess A.G. et al.: (Supernova Search Team). Astron. J. 116, 1009 (1998) astro-ph/9805201CrossRefADSGoogle Scholar
  6. 6.
    Riess A.G. et al.: (Supernova Search Team). Astrophys. J. 607, 665 (2004) astro-ph/0402512CrossRefADSGoogle Scholar
  7. 7.
    Riess A.G. et al.: Astrophys. J. 659, 98 (2007) astro-ph/0611572CrossRefADSGoogle Scholar
  8. 8.
    Spergel D.N. et al.: (WMAP). Astrophys. J. Suppl. 148, 175 (2003) astro-ph/0302209CrossRefADSGoogle Scholar
  9. 9.
    Spergel D.N. et al.: (WMAP). Astrophys. J. Suppl 170, 377 (2007) astro-ph/0603449CrossRefADSGoogle Scholar
  10. 10.
    Mannheim P.D.: Prog. Part. Nucl. Phys. 56, 340 (2006) astro-ph/0505266CrossRefADSGoogle Scholar
  11. 11.
    Schmidt H.-J.: Int. J. Geom. Meth. Phys. 4, 209 (2007) gr-qc/0602017MATHCrossRefGoogle Scholar
  12. 12.
    Nojiri S., Odintsov S.D.: ECONF C 0602061, 06 (2006) hep-th/0601213Google Scholar
  13. 13.
    Clifton, T.: (2006). gr-qc/0610071Google Scholar
  14. 14.
    Zakharov A.F., Pervushin V.N., De Paolis F., Ingrosso G., Nucita A.A.: AIP Conf. Proc. 966, 173 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Weyl H.: Math Z. 2, 384 (1918)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Weyl H.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1918, 465 (1918)Google Scholar
  17. 17.
    Weyl H.: Annalen Phys. 59, 101 (1919)CrossRefADSGoogle Scholar
  18. 18.
    Weinberg S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  19. 19.
    Di Francesco P., Mathieu P., Senechal D.: Conformal Field Theory. Springer, New York (1997)MATHGoogle Scholar
  20. 20.
    Schimming R., Schmidt H.-J.: NTM Schriftenr. Gesch. Naturw. Tech. Med. 27, 410 (1990) gr-qc/0412038MathSciNetGoogle Scholar
  21. 21.
    Bach R.: Math Z. 9, 110 (1921)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lanczos C.: Ann. Math. 39, 842 (1938)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Einstein A.: Sitzungsber. Preuss. Akad. Wiss. Berlin 1, 261 (1921)Google Scholar
  24. 24.
    Mannheim P.D., Kazanas D.: Astrophys. J. 342, 635 (1989)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Kazanas D., Mannheim P.D.: Astrophys. J. Suppl. 76, 431 (1991)CrossRefADSGoogle Scholar
  26. 26.
    Schmidt H.-J.: Annalen Phys. 41, 435 (1984) gr-qc/0105108CrossRefADSGoogle Scholar
  27. 27.
    Wood, J., Moreau, W.: (2001). gr-qc/0102056Google Scholar
  28. 28.
    Fulton T., Rohrlich F., Witten L.: Rev. Mod. Phys. 34, 442 (1962)MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Stelle K.S.: Phys. Rev. D 16, 953 (1977)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Buchdahl H.A.: Nuovo Cim. 23, 141 (1962)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Anonymous Reviewer (private communication) (2009)Google Scholar
  32. 32.
    Schmidt H.-J.: Annalen Phys. 9(I), 158 (2000) gr-qc/9905103Google Scholar
  33. 33.
    Riegert, R.J.: UMI Ph.D. thesis 86-22902 (1986)Google Scholar
  34. 34.
    Hulse R.A., Taylor J.H: Astrophys. J. 195, L51 (1975)CrossRefADSGoogle Scholar
  35. 35.
    Taylor J.H., Weisberg J.M.: Astrophys. J. 345, 434 (1989)CrossRefADSGoogle Scholar
  36. 36.
    Weisberg, J.M., Taylor, J.H.: (2002). astro-ph/0211217Google Scholar
  37. 37.
    Weisberg, J.M., Taylor, J.H.: (2004). astro-ph/0407149Google Scholar
  38. 38.
    Mannheim P.D.: Astrophys. J. 419, 150 (1993) hep-ph/9212304CrossRefADSGoogle Scholar
  39. 39.
    Mannheim, P.D.: (1993b). astro-ph/9307004Google Scholar
  40. 40.
    Mannheim, P.D.: (1993c). astro-ph/9307003Google Scholar
  41. 41.
    Mannheim, P.D.: (1995a). astro-ph/9504022Google Scholar
  42. 42.
    Mannheim, P.D.: (1995b). astro-ph/9508045Google Scholar
  43. 43.
    Mannheim, P.D., Kmetko, J.: (1996). astro-ph/9602094Google Scholar
  44. 44.
    Mannheim P.D.: Astrophys. J. 479, 659 (1997) astro-ph/9605085CrossRefADSGoogle Scholar
  45. 45.
    Milgrom M.: Astrophys. J. 270, 365 (1983)CrossRefADSGoogle Scholar
  46. 46.
    Milgrom M.: Astrophys. J. 270, 371 (1983)CrossRefADSGoogle Scholar
  47. 47.
    Bekenstein J., Milgrom M.: Astrophys. J. 286, 7 (1984)CrossRefADSGoogle Scholar
  48. 48.
    Bekenstein J.D.: Phys. Rev. D 70, 083509 (2004) astro-ph/0403694CrossRefADSGoogle Scholar
  49. 49.
    Mannheim P.D.: Gen. Relativ. Gravit. 22, 289 (1990)MATHCrossRefMathSciNetADSGoogle Scholar
  50. 50.
    Mannheim P.D.: Astrophys. J. 391, 429 (1992) uCONN-91-1CrossRefADSGoogle Scholar
  51. 51.
    Mannheim P.D.: Gen. Relativ. Gravit. 25, 697 (1993)CrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Mannheim, P.D.: (1996a). astro-ph/9601071Google Scholar
  53. 53.
    Mannheim P.D.: Phys. Rev. D 58, 103511 (1998) astro-ph/9804335CrossRefADSGoogle Scholar
  54. 54.
    Mannheim P.D.: Astrophys. J. 561, 1 (2001) astro-ph/9910093CrossRefMathSciNetADSGoogle Scholar
  55. 55.
    Mannheim P.D.: Int. J. Mod. Phys. D 12, 893 (2003) astro-ph/0104022CrossRefADSGoogle Scholar
  56. 56.
    Mannheim P.D.: AIP Conf. Proc. 672, 47 (2003) astro-ph/0302362CrossRefADSGoogle Scholar
  57. 57.
    Mannheim P.D.: Phys. Rev. D 75, 124006 (2007) gr-qc/0703037CrossRefMathSciNetADSGoogle Scholar
  58. 58.
    Mannheim, P.D.: (2008). arXiv:0809.1200 [hep-th]Google Scholar
  59. 59.
    Flanagan E.E.: Phys. Rev. D 74, 023002 (2006) astro-ph/0605504CrossRefMathSciNetADSGoogle Scholar
  60. 60.
    Faraoni V., Gunzig E., Nardone P.: Fund. Cosmic Phys. 20, 121 (1999) gr-qc/9811047ADSGoogle Scholar
  61. 61.
    Behnke D., Blaschke D.B., Pervushin V.N., Proskurin D.: Phys. Lett. B 530, 20 (2002) gr-qc/ 0102039MATHCrossRefADSGoogle Scholar
  62. 62.
    Varieschi, G.U.: (2008). arXiv:0812.2472 [astro-ph]Google Scholar
  63. 63.
    Peebles P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)Google Scholar
  64. 64.
    Kolb E.W., Turner M.S.: The Early Universe. Addison-Wesley, USA (1990)MATHGoogle Scholar
  65. 65.
    Lang, K.R.: Astrophysical formulae: vol. 1: Radiation, gas processes and high energy astrophysics. vol. 2: Space, Time, Matter and Cosmology. Springer, Berlin (1999)Google Scholar
  66. 66.
    Peacock J.A.: Cosmological Physics. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  67. 67.
    Webb S.: Measuring the Universe: The Cosmological Distance Ladder. Springer-Praxis, Chichester (1999)Google Scholar
  68. 68.
    Infeld L.: Nature 156, 114 (1945)CrossRefADSGoogle Scholar
  69. 69.
    Schild, A.: Ph.D. thesis, University of Toronto, Canada (1946)Google Scholar
  70. 70.
    Infeld L., Schild A.: Phys. Rev. 68, 250 (1945)CrossRefMathSciNetADSGoogle Scholar
  71. 71.
    Infeld L., Schild A.E.: Phys. Rev. 70, 410 (1946)CrossRefMathSciNetADSGoogle Scholar
  72. 72.
    Endean G.: Astrophys. J. 434, 397 (1994)CrossRefADSGoogle Scholar
  73. 73.
    Endean G.: Astrophys. J. 479, 40 (1997)CrossRefADSGoogle Scholar
  74. 74.
    Querella L.: Astrophys. J. 508, 129 (1998) gr-qc/9807020CrossRefADSGoogle Scholar
  75. 75.
    Narlikar J.V.: Introduction to Cosmology. Jones and Bartlett, Boston (1983)Google Scholar
  76. 76.
    Dirac P.A.M.: Nature 139, 323 (1937)MATHCrossRefADSGoogle Scholar
  77. 77.
    Dirac P.A.M: Proc. Roy. Soc. Lond. 165A, 199 (1938)ADSGoogle Scholar
  78. 78.
    NIST—Physics Laboratory Website (http://physics.nist.gov/)
  79. 79.
  80. 80.
    Barrow J.D.: The Constants of Nature. Pantheon Books, New York (2002)Google Scholar
  81. 81.
    Uzan J.-P.: Rev. Mod. Phys. 75, 403 (2003) hep-ph/0205340CrossRefMathSciNetADSGoogle Scholar
  82. 82.
    Okun L.B.: Lect. Notes Phys. 648, 57 (2004) physics/0310069ADSGoogle Scholar
  83. 83.
    Albrecht A., Magueijo J.: Phys. Rev. D 59, 043516 (1999) astro-ph/9811018CrossRefADSGoogle Scholar
  84. 84.
    Barrow J.D.: Phys. Rev. D 59, 043515 (1999)CrossRefMathSciNetADSGoogle Scholar
  85. 85.
    Magueijo J.: Phys. Rev. D 62, 103521 (2000) gr-qc/0007036CrossRefADSGoogle Scholar
  86. 86.
    Anderson J.D. et al.: Phys. Rev. Lett. 81, 2858 (1998) gr-qc/9808081CrossRefADSGoogle Scholar
  87. 87.
    Anderson J.D. et al.: Phys. Rev. D 65, 082004 (2002) gr-qc/0104064CrossRefADSGoogle Scholar
  88. 88.
    Turyshev S.G., Anderson J.D., Nieto M.M.: Am. J. Phys. 73, 1033 (2005) physics/0502123CrossRefADSGoogle Scholar
  89. 89.
    Turyshev S.G., Toth V.T., Kellogg L.R., Lau E.L., Lee K.J.: Int. J. Mod. Phys. D 15, 1 (2006) gr-qc/0512121MATHCrossRefADSGoogle Scholar
  90. 90.
    Toth V.T., Turyshev S.G.: Can. J. Phys. 84, 1063 (2006) gr-qc/0603016CrossRefADSGoogle Scholar
  91. 91.
    Mannheim P.D.: Found. Phys. 26, 1683 (1996) gr-qc/9611038CrossRefMathSciNetADSGoogle Scholar
  92. 92.
    Narlikar J., Arp H.: Astrophys. J. 405, 51 (1993)CrossRefADSGoogle Scholar
  93. 93.
    Endean G.: MNRAS 277, 627 (1995)ADSGoogle Scholar
  94. 94.
    Lightman A.P., Press W.H., Price R.H., Teukolsky S.A.: Problem Book in Relativity and Gravitation. Princeton University Press, Princeton (1975)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of PhysicsLoyola Marymount UniversityLos AngelesUSA

Personalised recommendations