Skip to main content
Log in

Power spectrum in the Chaplygin gas model: tachyonic, fluid and scalar field representations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Chaplygin gas model, characterized by an equation of state of the type \({p = - \frac{A}{\rho}}\) emerges naturally from the Nambu-Goto action of string theory. This fluid representation can be recast under the form of a tachyonic field given by a Born–Infeld type Lagrangian. At the same time, the Chaplygin gas equation of state can be obtained from a self-interacting scalar field. We show that, from the point of view of the supernova type Ia data, the three representations (fluid, tachyonic, scalar field) lead to the same results. However, concerning the matter power spectra, while the fluid and tachyonic descriptions lead to exactly the same results, the self-interacting scalar field representation implies different statistical estimations for the parameters. In particular, the estimation for the dark matter density parameter in the fluid representation favors a universe dominated almost completely by dark matter, while in the self-interacting scalar field representation the prediction is very close to that obtained in the ΛCDM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaplygin S.: Sci. Mem. Moscow Univ. Math. Phys. 21, 1 (1904)

    Google Scholar 

  2. Tsien H.-S.: J. Aeron. Sci. 6, 399 (1939)

    MATH  MathSciNet  Google Scholar 

  3. von Karman T.: J. Aeron. Sci. 8, 337 (1941)

    Google Scholar 

  4. Hoppe, J.: Supermembranes in 4 Dimensions. hep-th/9311059

  5. Jackiw R., Polychronakos A.P.: Phys. Rev. D 62, 085019 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. Jackiw, R.: A particle field theorist’s lectures on supersymmetric, non abelian fluid mechanics and dbranes, physics/0010042

  7. Kamenshchik A.Y., Moschella U., Pasquier V.: Phys. Lett. B 511, 265 (2001)

    Article  MATH  ADS  Google Scholar 

  8. Bento M.C., Bertolami O., Sen A.A.: Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  9. Riess A., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  10. Perlmutter S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  11. Colistete R. Jr, Fabris J.C.: Class. Quant. Grav. 22, 2813 (2005)

    Article  MATH  ADS  Google Scholar 

  12. Barreiro T., Bertolami O., Torres P.: Phys. Rev. D 78, 043530 (2008)

    Article  ADS  Google Scholar 

  13. Gorini V., Kamenshchik A.Y., Moschella U., Piattella O.F., Starobinsky A.A.: JCAP 02, 016 (2008)

    ADS  Google Scholar 

  14. Fabris J.C., Gonçalves S.V.B., Velten H.E.S., Zimdahl W.: Phys. Rev. D 78, 103523 (2008)

    Article  ADS  Google Scholar 

  15. Fabris J.C., Martin J.: Phys. Rev. D 55, 5205 (1997)

    Article  ADS  Google Scholar 

  16. Jassal, H.K.: A comparison of perturbations in fluid and scalar field models of dark energy. arXiv/0903.5370[astro-ph]

  17. Avelino P.P., Beça L.M.G., Martins C.J.A.P.: Phys. Rev. D 77, 063515 (2008)

    Article  ADS  Google Scholar 

  18. Gibbons G.W.: Phys. Lett. B 638, 186 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Padmanabhan T.: Phys. Rev. D 66, 021301 (2002)

    Article  ADS  Google Scholar 

  20. Frolov A., Kofman L., Starobinsky A.A.: Phys. Lett. B 545, 8 (2002)

    Article  MATH  ADS  Google Scholar 

  21. Abramo L.R.W., Finelli F.: Phys. Lett. B 575, 165 (2003)

    Article  MATH  ADS  Google Scholar 

  22. Keresztes Z., Gergely L.À., Gorini V., Moschella U., Kamenshchik A.Yu.: Phys. Rev. D 79, 083504 (2009)

    Article  ADS  Google Scholar 

  23. Fabris J.C., Shapiro I.L., Sola J.: JCAP 02, 016 (2007)

    ADS  Google Scholar 

  24. Sandvik H., Tegmark M., Zaldarriaga M., Waga I.: Phys. Rev. D 69, 123524 (2004)

    Article  ADS  Google Scholar 

  25. Beça L.M.G., Avelino P.P., de Carvalho J.P.M., Martins C.J.A.P.: Phys. Rev. D 67, 101301 (2003)

    Article  ADS  Google Scholar 

  26. Bilic N., Tupper G.B., Viollier R.D.: Phys. Lett. B 535, 17 (2002)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio Cesar Fabris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, C.E.M., Fabris, J.C. & Morita, M. Power spectrum in the Chaplygin gas model: tachyonic, fluid and scalar field representations. Gen Relativ Gravit 42, 839–849 (2010). https://doi.org/10.1007/s10714-009-0884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0884-9

Keywords

Navigation