Advertisement

General Relativity and Gravitation

, Volume 42, Issue 3, pp 489–508 | Cite as

Is the non-physical states conjecture valid?

  • Alfredo Macías
  • Abel CamachoEmail author
  • Luis F. Barragán-Gil
  • Claus Lämmerzahl
Research Article
  • 76 Downloads

Abstract

The canonical quantization for N = 1 supergravity in the context of gravitational minisuperspace described by Gowdy T 3 and Bianchi class A cosmological models is analyzed in order to search for physical states. There are indeed physical states in the minisuperspace sector of the theory. This fact entails that the non-physical states conjecture has a restricted validity, and in consequence it cannot be considered a general result.

Keywords

Quantum supergravity Non-physical states conjecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carroll S.M., Freedman D.Z., Ortiz M.E., Page D.: Physical states in canonically quantized supergravity. Nucl. Phys. B 423, 661 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    D’Eath P.D.: Bosonic physical states in N = 1 supergravity. Phys. Lett. B 321, 368 (1994)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    de Wit B., Matschull H.-J., Nicolai H.: Physical states in d = 3, N = 2 supergravity. Phys. Lett. 318, 115 (1993)MathSciNetGoogle Scholar
  4. 4.
    Macías A., Camacho A., Kunz J., Lãmmerzahl C.: Midisuperspace supersymmetric quantum cosmology. Phys. Rev. D 77, 064009 (2008)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Matzner, R.: Private communicationGoogle Scholar
  6. 6.
    Misner C.W.: A minisuperspace example: the Gowdy T 3 cosmology. Phys. Rev. D 8, 3271 (1973)CrossRefADSGoogle Scholar
  7. 7.
    Pilati M.: The canonical formulation of supergravity. Nucl. Phys. B 132, 138 (1978)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Teitelboim C.: Supergravity and square roots of constraints. Phys. Rev. Lett. 38, 1106 (1977)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Mielke E.W., Baekler P., Hehl F.W., Macías A., Morales-Técotl H.A.: Yang–Mills–Clifford form of the chiral Einstein action. In: Pronin, P., Sardanashvily, G. (eds) Gravity, Particles and Space–Time, pp. 217–254. World Scientific, Singapore (1996)Google Scholar
  10. 10.
    Mielke E.W., Macías A., Morales-Técotl H.A.: Chiral fermions coupled to chiral gravity. Phys. Lett. 215, 14 (1996)CrossRefGoogle Scholar
  11. 11.
    Macías A.: Chiral (N = 1) supergravity. Class. Quantum Grav. 13, 3163 (1996)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    Deser S., Kay J.H., Stelle K.S.: Hamiltonian formulation of supergravity. Phys. Rev. D 16, 2448 (1977)CrossRefADSGoogle Scholar
  13. 13.
    Kaku M.: Quantum Field Theory. Oxford University Press, Oxford (1993)Google Scholar
  14. 14.
    van Nieuwenhuizen P.: Supergravity. Phys. Rep. 68, 189 (1981)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Macías A., Quevedo H., Sánchez A.: Local Lorentz invariance in N = 1 supergravity. Phys. Rev. D 73, 027501 (2006)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Gowdy R.: Gravitational waves in closed universes. Phys. Rev. Lett. 27, 826 (1971)CrossRefADSGoogle Scholar
  17. 17.
    Gowdy R.: Vacuum space–times with two parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions. Ann. Phys. (NY) 83, 203 (1974)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Berger B.K.: Quantum graviton creation in a model universe. Ann. Phys. (NY) 83, 458 (1974)CrossRefADSGoogle Scholar
  19. 19.
    Ryan M.P.: Hamiltonian Cosmology. Springer, New York (1972)Google Scholar
  20. 20.
    Macías A., Camacho A.: On the incompatibility between quantum theory and general relativity. Phys. Lett. B 663, 99 (2008)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Macías A., Quevedo H.: Time paradox in quantum gravity. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds) Quantum Gravity—Mathematical Models and Experimental Bounds., pp. 41–60. Birkhauser, Basel (2006)Google Scholar
  22. 22.
    Kuchař K.: Time and interpretation of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 211–314. World Scientific, Singapore (1992)Google Scholar
  23. 23.
    Kuchař K.V., Ryan M.P.: Is minisuperspace quantization valid? Taub and mixmaster. Phys. Rev. D 40, 3982 (1989)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Freedman D., van Nieuwenhuizen P., Ferrara S.: Progress toward a theory of supergravity. Phys. Rev. D 13, 3214 (1976)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Freedman D., van Nieuwenhuizen P.: Properties of supergravity theory. Phys. Rev. D 14, 912 (1976)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Misner C.: Quantum Cosmology I. Phys. Rev. 186, 1319 (1969)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Misner, C.W.: In: Klauder, J.R. (ed.) Magic without Magic: John Archibald Wheeler. Freeman, San Francisco (1972)Google Scholar
  28. 28.
    Deser S., Zumino B.: Broken supersymmetry and supergravity. Phys. Rev. Lett. 38, 1433 (1977)CrossRefADSGoogle Scholar
  29. 29.
    Ellis G.F.R., MacCallum M.A.H.: A class of homogeneous cosmological models. Comm. Math. Phys. 12, 108 (1969)zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Ryan M.P., Shepley L.C.: Homogeneous Relativistic Cosmologies. Princeton University Press, New Jersey (1975)Google Scholar
  31. 31.
    Macías, A., Ryan, M.P. Jr.: In: Ruffini, R., Jantzen, R.T., Mackeiser, G. (eds.) Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity, p.304. World Scientific, Singapore (1996)Google Scholar
  32. 32.
    Csordás A., Graham R.: Hartle–Hawking state in supersymmetric minisuperspace. Phys. Lett. B 373, 51 (1996)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Barbero J.F., Ryan M.P.: Minisuperspace examples of quantization using canonical variables of the Ashtekar-type: Structure and solutions. Phys. Rev. D 53, 5670 (1996)CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Moncrief V., Ryan M.P.: Amplitude-real-phase exact solutions for quantum mixmaster universes. Phys. Rev. D 44, 2375 (1991)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alfredo Macías
    • 1
  • Abel Camacho
    • 1
    Email author
  • Luis F. Barragán-Gil
    • 1
  • Claus Lämmerzahl
    • 2
  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana-IztapalapaMéxico, D.F.Mexico
  2. 2.ZARMUniversity of BremenBremenGermany

Personalised recommendations