General Relativity and Gravitation

, Volume 41, Issue 9, pp 2113–2130 | Cite as

Non-existence of stationary two-black-hole configurations

Open Access
Research Article

Abstract

We resume former discussions of the question, whether the spin–spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-Gómez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.

Keywords

Inverse scattering method Spin-spin repulsion Double-Kerr-NUT solution Sub-extremal black holes 

References

  1. 1.
    Ansorg M., Petroff D.: Negative Komar mass of single objects in regular, asymptotically flat spacetimes. Class. Quantum Grav. 23, L81 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Ansorg M., Hennig J.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 222001 (2008)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Ansorg M., Hennig J.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory. Phys. Rev. Lett. 102, 221102 (2009)CrossRefADSGoogle Scholar
  4. 4.
    Bardeen J.M., Carter B., Hawking S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Beig R., Schoen R.M.: On static n-body configurations in relativity. Class. Quantum Grav. 26, 075014 (2009)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Booth I., Fairhurst S.: Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 77, 084005 (2008)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Carter, B.: In: deWitt, C., deWitt, B. (eds.) Black hole equilibrium states in Black Holes (Les Houches). Gordon and Breach, London (1973)Google Scholar
  8. 8.
    Dietz W., Hoenselaers C.: Two mass solution of Einstein’s vacuum equations: the double Kerr solution. Ann. Phys. 165, 319 (1985)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Hennig J., Ansorg M., Cederbaum C.: A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter. Class. Quantum Grav. 25, 162002 (2008)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Hennig, J., Cederbaum, C., Ansorg, M.: A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein–Maxwell theory. arXiv:0812.2811 (2008)Google Scholar
  11. 11.
    Hennig, J., Ansorg, M.: The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory: study in terms of soliton methods. arXiv:0904.2071 (2009)Google Scholar
  12. 12.
    Hoenselaers, C., Dietz, W.: Talk given at the GR10 meeting, Padova (1983)Google Scholar
  13. 13.
    Hoenselaers C.: Remarks on the double-Kerr-solution. Prog. Theor. Phys. 72, 761 (1984)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Kihara M., Tomimatsu A.: Some properties of the symmetry axis in a superposition of two Kerr solutions. Prog. Theor. Phys. 67, 349 (1982)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Kramer D., Neugebauer G.: The superposition of two Kerr solutions. Phys. Lett. A 75, 259 (1980)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Kramer D.: Two Kerr-NUT constituents in equilibrium. Gen. Relativ. Gravit. 18, 497 (1986)CrossRefADSGoogle Scholar
  17. 17.
    Krenzer, G.: Schwarze Löcher als Randwertprobleme der axislsymmetrisch-stationären Einstein–Gleichungen. PhD Thesis, University of Jena (2000)Google Scholar
  18. 18.
    Manko V.S., Ruiz E., Sanabria-Gómez J.D.: Extended multi-soliton solutions of the Einstein field equations: II. Two comments on the existence of equilibrium states. Class. Quantum Grav. 17, 3881 (2000)MATHCrossRefADSGoogle Scholar
  19. 19.
    Manko V.S., Ruiz E.: Exact solution of the double-Kerr equilibrium problem. Class. Quantum Grav. 18, L11 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Neugebauer G.: Bäcklund transformations of axially symmetric stationary gravitational fields. J. Phys. A 12, L67 (1979)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Neugebauer G.: A general integral of the axially symmetric stationary Einstein equations. J. Phys. A 13, L19 (1980)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Neugebauer G.: Recursive calculation of axially symmetric stationary Einstein fields. J. Phys. A 13, 1737 (1980)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Neugebauer G.: Rotating bodies as boundary value problems. Ann. Phys. (Leipzig) 9, 342 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Neugebauer G., Meinel R.: Progress in relativistic gravitational theory using the inverse scattering method. J. Math. Phys. 44, 3407 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Smarr, L.: Mass formula for Kerr black holes. Phys. Rev. Lett. 30, 71 (1973); Erratum: Phys. Rev. Lett. 30, 521 (1973)Google Scholar
  26. 26.
    Tomimatsu A., Kihara M.: Conditions for regularity on the symmetry axis in a superposition of two Kerr-NUT solutions. Prog. Theor. Phys. 67, 1406 (1982)MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Weyl H.: Das statische Zweikörperproblem in Neue Lösungen der Einsteinschen Gravitationsgleichungen. Mathemat. Z. 13, 142 (1922)Google Scholar
  28. 28.
    Yamazaki M.: Stationary line of N Kerr masses kept apart by gravitational spin–spin interaction. Phys. Rev. Lett. 50, 1027 (1983)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-UniversitätJenaGermany
  2. 2.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany

Personalised recommendations