Skip to main content
Log in

Accelerating electromagnetic magic field from the C-metric

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Various aspects of the C-metric representing two rotating charged black holes accelerated in opposite directions are summarized and its limits are considered. A particular attention is paid to the special-relativistic limit in which the electromagnetic field becomes the “magic field” of two oppositely accelerated rotating charged relativistic discs. When the acceleration vanishes the usual electromagnetic magic field of the Kerr–Newman black hole with gravitational constant set to zero arises. Properties of the accelerated discs and the fields produced are studied and illustrated graphically. The charges at the rim of the accelerated discs move along spiral trajectories with the speed of light. If the magic field has some deeper connection with the field of the Dirac electron, as is sometimes conjectured because of the same gyromagnetic ratio, the “accelerating magic field” represents the electromagnetic field of a uniformly accelerated spinning electron. It generalizes the classical Born’s solution for two uniformly accelerated monopole charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bičák J., Kofroň D.: The Newtonian limit of spacetimes for accelerated particles and black holes. Gen. Relativ. Gravit 41, 153–172 (2009)

    Article  MATH  ADS  Google Scholar 

  2. Bičák J.: Gravitational radiation from uniformly accelerated particles in general relativity. Proc. Roy. Soc. Lond. A 302, 201–224 (1968)

    Article  ADS  Google Scholar 

  3. Bičák, J.: Selected solutions of Einstein’s field equations: their role in general relativity and astrophysics. In: Schmidt, B.G. (ed.) Einstein’s Field Equations and Their Physical Implications, Selected Essays in Honour of Jürgen Ehlers. Lect. Notes Phys., vol. 540, pp. 1–112. Springer, Berlin (2000)

  4. Bičák J., Muschall R.: Electromagnetic fields and radiative patterns from multipoles in hyperbolic motion. Wiss. Zeits. der Friedrich-Schiller-Universität Jena 39, 15–20 (1990)

    Google Scholar 

  5. Bičák, J., Pravda, V.: Spinning C metric: radiative spacetime with accelerating, rotating black holes. Phys. Rev. D 60, 044004 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bičák J., Schmidt B.: Asymptotically flat radiative space-times with boost-rotation symmetry: The general structure. Phys. Rev. D 40, 1827–1853 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bonnor W.: Closed timelike curves in general relativity. Int. J. Mod. Phys. D 12, 1705–1708 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bonnor W., Swaminayaran N.: An exact solution for uniformly accelerated particles in general relativity. Z. Phys. 177, 1547–1559 (1964)

    Google Scholar 

  9. Ehlers J.: Examples of Newtonian limits of relativistic spacetimes. Class. Quantum Grav. 14, A119–A126 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Ehlers J.: Newtonian limit of general relativity. In: Francoise, J.P., Naber, G.L., Tsou, S.T.(eds) Encyclopedia of Mathematical Physics, vol. 3, pp. 503–509. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  11. Ehlers J., Kundt K.: Exact solutions of the gravitational field equations. In: Witten, L.(eds) Gravitation: An Introduction to Current Research, Wiley, New York (1962)

    Google Scholar 

  12. Griffiths J.B., Krtouš P., Podolský J.: Interpreting the C-metric. Class. Quantum Grav. 23, 6745–6766 (2006)

    Article  MATH  ADS  Google Scholar 

  13. Griffiths J.B., Podolský J.: Global aspects of accelerating and rotating black hole spacetimes. Class. Quantum Grav. 23, 555–568 (2006)

    Article  MATH  ADS  Google Scholar 

  14. Havrdová L., Krtouš P.: Melvin universe as a limit of the C-metric. Gen. Relativ. Gravit. 39, 291–296 (2007)

    Article  MATH  ADS  Google Scholar 

  15. Hong K., Teo E.: A new form of the C-metric. Class. Quantum Grav. 20, 3269–3277 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Hong K., Teo E.: A new form of the rotating C-metric. Class. Quantum Grav. 22, 109–117 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Kinnersley W., Walker M.: Uniformly accelerating charged mass in general relativity. Phys. Rev. D 2, 1359–1370 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  18. Letelier P.S., de Oliveira S.R.: Double Kerr-NUT spacetimes: spinning strings and spinning rods. Phys. Lett. A 238, 101–106 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Lynden-Bell, D.: A magic electromagnetic field. In: Thompson, M.J., Christensen-Dalsgaard, J. (eds.) Stellar Astrophysical Fluid Dynamics, pp. 369–375. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  20. Lynden-Bell, D.: Electromagnetic magic: The relativistically rotating disk. Phys. Rev. D 70, 105017 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lynden-Bell, D.: Relativistically spinning charged sphere. Phys. Rev. D 70, 104021 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman and Co, New York (1973)

    Google Scholar 

  23. Newman E.T.: Classical, geometric origin of magnetic moments, spin-angular momentum, and the Dirac gyromagnetic ratio. Phys. Rev. D 65, 104005 (2002)

    Article  ADS  Google Scholar 

  24. Pekeris C.L., Frankowski K.: Hyperfine splitting in muonium, positronium, and hydrogen, deduced from a solution of Dirac’s equation in Kerr-Newman geometry. Phys. Rev. A 39, 518–529 (1989)

    Article  ADS  Google Scholar 

  25. Plebański J.F., Demiański M.: Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. 98, 98–127 (1976)

    Article  MATH  ADS  Google Scholar 

  26. Rohrlich F.: Classical Charged Particles. World Scientific Publishing Co, Singapore (2007)

    MATH  Google Scholar 

  27. Stephani H., Kramer D., MacCallum M., Hoensealers C., Herlt E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  28. Wald R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Bičák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bičák, J., Kofroň, D. Accelerating electromagnetic magic field from the C-metric. Gen Relativ Gravit 41, 1981–2001 (2009). https://doi.org/10.1007/s10714-009-0816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0816-8

Keywords

Navigation