Skip to main content
Log in

Charged cosmic strings interacting with gravitational and electromagnetic waves

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Under a particular choice of the Ernst potential, we solve analytically the Einstein–Maxwell equations to derive a new exact solution depending on five parameters: the mass, the angular-momentum (per unit mass), α, the electromagnetic-field strength, k, the parameter-p and the Kerr-NUT parameter, l. This (Petrov Type D) solution is cylindrically symmetric and represents the curved background around a charged, rotating cosmic string, surrounded by gravitational and electromagnetic waves, under the influence of the Kerr-NUT parameter. A C-energy study in the radiation zone suggests that both the incoming and the outgoing radiation is gravitational, strongly focused around the null direction and preserving its profile. In this case, the absence of the k-parameter from the C-energy implies that, away from the linear defect the electromagnetic field is too weak to contribute to the energy-content of the cylindrically symmetric space-time under consideration. In order to explain this result, we have evaluated the Weyl and the Maxwell scalars near the axis of the linear defect and at the spatial infinity. Accordingly, we have found that the electromagnetic field is concentrated (mainly) in the vicinity of the axis, while falling-off prominently at large radial distances. However, as long as k ≠ 1, the non-zero Kerr-NUT parameter enhances those scalars, both near the axis and at the spatial infinity, introducing some sort of gravitomagnetic contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hindmarsh M.B., Kibble T.B.W.: Cosmic Strings. Rep. Progr. Phys. 58, 477–562 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  2. Vilenkin A., Shellard E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Vilenkin A.: Cosmic strings and domain walls. Phys. Rep. 121, 263–315 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  4. Vilenkin A.: Looking for cosmic strings. Nature 322, 613–614 (1986)

    Article  ADS  Google Scholar 

  5. Zel’dovich Ya B.: Cosmological fluctuations produced near a singularity. Mon. Not. R. Astron. Soc. 192, 663–667 (1980)

    ADS  Google Scholar 

  6. Allen B.: The stochastic gravity-wave background: sources and detection. In: Marck, J.A., Lassota, J.P. (eds) Les Houches School on Astrophysical Sources of Gravitational Waves, Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Kibble T.B.W.: Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976)

    Article  ADS  Google Scholar 

  8. Kibble T.B.W.: Some implications of a cosmological phase transition. Phys. Rep. 67, 183–199 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  9. Kibble T.B.W., Lazarides G., Shafi Q.: Strings in SO(10). Phys. Lett. B 113, 237–239 (1982)

    Article  ADS  Google Scholar 

  10. Kibble T.B.W., Turok N.: Self-intersection of cosmic strings. Phys. Lett. B 116, 141–143 (1982)

    Article  ADS  Google Scholar 

  11. Chandrasekhar S.: Cylindrical waves in general relativity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. Proc. 408, 209–232 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Chandrasekhar S., Ferrari V.: On the dispersion of cylindrical impulsive gravitational waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 412, 75–91 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  13. Chandrasekhar S., Xanthopoulos B.C.: Some exact solutions of gravitational waves coupled with fluid motions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 408, 205–224 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  14. Chandrasekhar S., Xanthopoulos B.C.: A new type of singularity created by colliding gravitational waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 409, 175–208 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chandrasekhar S., Xanthopoulos B.C.: On colliding waves that develop time-like singularities: a new class of solutions of the Einstein–Maxwell equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 410, 311–336 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Gott R.: Gravitational lensing effects of vacuum strings—exact solutions. Astrophys. J. 288, 422–427 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  17. Linet B.: The static metrics with cylindrical symmetry describing a model of cosmic strings. Gen. Relativ. Gravit. 17, 1109–1115 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  18. Papadopoulos D.B., Xanthopoulos B.C.: Tomimatsu–Sato solutions describe cosmic strings interacting with gravitational waves. Phys. Rev. D 41, 2512–2518 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  19. Papadopoulos D.B., Xanthopoulos B.C.: Tomimatsu-Sato electrovacuum cosmic string solutions for δ = 0 interacting with gravitational waves. J. Math. Phys. 36, 4248–4262 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Tian Q.J.: Cosmic strings with cosmological constant. Phys. Rev. D 33, 3549–3555 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  21. Xanthopoulos B.C.: A rotating cosmic string. Phys. Lett. B 178, 163–166 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  22. Xanthopoulos B.C.: Cylindrical waves and cosmic strings of Petrov type D. Phys. Rev. D 34, 3608–3616 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  23. Xanthopoulos B.C.: Cosmic strings coupled with gravitational and electromagnetic waves. Phys. Rev. D 35, 3713–3722 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  24. Kramer D., Stefani H., Herlt E., McCallum M.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, London (1980)

    MATH  Google Scholar 

  25. Garriga J., Verdaguer E.: Cosmic strings and Einstein–Rosen soliton waves. Phys. Rev. D 36, 2250–2258 (1987)

    Article  ADS  Google Scholar 

  26. Belinski V.A., Zakharov V.E.: Integration of the Einstein equation by means of the inverse scattering problem technique and construction of exact soliton solutions. J. Exp. Theor. Phys. 48, 985 (1978)

    ADS  Google Scholar 

  27. Belinski V.A., Zakharov V.E.: Stationary gravitational solitons with axial symmetry. J. Exp. Theor. Phys. 50, 1 (1979)

    ADS  Google Scholar 

  28. Economou A., Tsoubelis D.: Rotating cosmic strings and gravitational soliton waves. Phys. Rev. D 38, 498–505 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  29. Economou A., Tsoubelis D.: Interaction of cosmic strings with gravitational waves: a new class of exact solutions. Phys. Rev. Lett. 61, 2046–2049 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  30. Economou A., Tsoubelis D.: Multiple-soliton solutions of Einstein’s equations. J. Math. Phys. 30, 1562–1569 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Yazadjiev S.S.: Exact inhomogeneous Einstein–Maxwell-dilaton cosmologies. Phys. Rev. D 63, 063510(1)–063510(9) (2001)

    Article  MathSciNet  ADS  Google Scholar 

  32. Yazadjiev S.S.: Nonrotating cosmic strings interacting with gravitational waves in Einstein–Maxwell-dilaton gravity. Gen. Relativ. Gravit. 37, 1933–1945 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Bičák J., Katz J., Lynden-Bell D.: Gravitational waves and dragging effects. Class. Quantum Grav. 25, 165017(1)–165017(19) (2008)

    ADS  Google Scholar 

  34. Lynden-Bell D., Bičák J., Katz J.: Inertial frame rotation induced by rotating gravitational waves. Class. Quantum Grav. 25, 165018(1)–165018(13) (2008)

    Article  ADS  Google Scholar 

  35. Komar A.: Covariant conservation laws in general relativity. Phys. Rev. 113, 934–936 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Dagotto A.D., Gleiser R.J., Nicasio C.O.: New exact solution describing the interaction of Einstein–Maxwell radiation and a rotating cosmic string. Phys. Rev. D 42, 424–436 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  37. Tomimatsu A., Kihara M.: Conditions for regularity on the symmetry axis in a superposition of two Kerr-NUT solutions. Progr. Theoret. Phys. 67, 1406–1414 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Abdujabbarov, A.A., Ahmedov, B.J., Kagramanova, V.G.: Particle motion and electromagnetic fields of rotating compact gravitating objects with gravitomagnetic charge (2008). arXiv:0802.4349v2

  39. Adler R., Bazin M., Sciffer M.: Introduction to General Relativity. McGraw-Hill, New York (1975)

    Google Scholar 

  40. Carmeli M.: Classical Fields: General Relativity and Gauge Theory. Wiley, New York (1982)

    MATH  Google Scholar 

  41. Chandrasekhar S.: The Mathematical Theory of Black Holes. Oxford University Press, New York (1983)

    MATH  Google Scholar 

  42. Thorne K.S.: Energy of infinitely-long, cylindrically-symmetric systems in General Relativity. Phys. Rev. B 138, 251–266 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  43. Ashtekar A., Bičák J., Schmidt B.G.: Asymptotic structure of symmetry-reduced general relativity. Phys. Rev. D 55, 669–686 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  44. Ashtekar A., Bičák J., Schmidt B.G.: Behavior of Einstein–Rosen waves at null-infinity. Phys. Rev. D 55, 687–694 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  45. Hiscock W.A.: Exact gravitational field of a string. Phys. Rev. D 31, 3288–3290 (1985)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Kleidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleidis, K., Kuiroukidis, A., Nerantzi, P. et al. Charged cosmic strings interacting with gravitational and electromagnetic waves. Gen Relativ Gravit 42, 31 (2010). https://doi.org/10.1007/s10714-009-0812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-009-0812-z

Keywords

Navigation