Skip to main content

Gravitational and electroweak unification by replacing diffeomorphisms with larger group

Abstract

The covariance group for general relativity, the diffeomorphisms, is replaced by a group of coordinate transformations which contains the diffeomorphisms as a proper subgroup. The larger group is defined by the assumption that all observers will agree whether any given quantity is conserved. Alternatively, and equivalently, it is defined by the assumption that all observers will agree that the general relativistic wave equation describes the propagation of light. Thus, the group replacement is analogous to the replacement of the Lorentz group by the diffeomorphisms that led Einstein from special relativity to general relativity, and is also consistent with the assumption of constant light velocity that led him to special relativity. The enlarged covariance group leads to a non-commutative geometry based not on a manifold, but on a nonlocal space in which paths, rather than points, are the most primitive invariant entities. This yields a theory which unifies the gravitational and electroweak interactions. The theory contains no adjustable parameters, such as those that are chosen arbitrarily in the standard model.

This is a preview of subscription content, access via your institution.

References

  1. Einstein, A.: Autobiographical notes. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher—Scientist, vol. I, p. 89. Harper & Brothers, New York (1949)

  2. Dirac P.A.M.: The Principles of Quantum Mechanics, Preface to First Edition. Cambridge University Press, Cambridge (1930)

    Google Scholar 

  3. Pandres D. Jr: On forces and interactions between fields. J. Math. Phys. 3, 602–607 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Pandres D. Jr: Unification of gravitation and electromagnetism. Lett. Nuovo Cimento 8, 595–599 (1973)

    Article  MathSciNet  Google Scholar 

  5. Pandres D. Jr: Gravitation and electromagnetism. Found. Phys. 7, 421–430 (1977)

    Article  ADS  Google Scholar 

  6. Feynman R.P., Hibbs A.R.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1965)

    MATH  Google Scholar 

  7. Witten, E.: In: Davis, P.C.W., Brown J. (eds.) Superstrings: A Theory of Everything, p. 90. Cambridge University Press, Cambridge (1988)

  8. Eddington A.S.: The Mathematical Theory of Relativity, 2nd edn., p. 225. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  9. Penrose R.: Int. J. Theor. Phys. 1, 61 (1968)

    Article  Google Scholar 

  10. Penrose, R., MacCallum, A.H.: Phys. Rep. 6C, 242 (1972) and references contained therein

  11. Finkelstein D.: Phys. Rev. 184, 1261 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Finkelstein D.: Phys. Rev. D 5, 321 (1972)

    ADS  Google Scholar 

  13. Finkelstein, D., Frye, G., Susskind, L.: Phys. Rev. D 9, 2231 (1974) and references contained therein

  14. Bergmann P.G., Komar A.: The coordinate group symmetries of general relativity. Int. J. Theor. Phys. 5, 15–28 (1972)

    Article  MathSciNet  Google Scholar 

  15. Gambini R., Trias A.: Geometrical origin of gauge theories. Phys. Rev. D15 23, 553–555 (1981)

    Article  MathSciNet  Google Scholar 

  16. Connes, A.: Noncommutative differential geometry and the structure of space time. Prepared for NATO Advance Study Institute on Quantum Fields and Quantum Space Time, Cargese, France (1996)

  17. Crane, L.: What is the mathematical structure of quantum space-time? Los Alamos Preprints (LANL Number 0706.4452v1), June 29 (2007)

  18. Mandelstam S.: Quantum electrodynamics without potentials. Ann. Phys. N.Y. 19, 1–24 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Pandres D. Jr: Quantum unified field theory from enlarged coordinate transformation group. Phys. Rev. D 24, 1499–1508 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  20. Pauli W.: Theory of Relativity, p. 5. Pergamon Press, Oxford (1958)

    MATH  Google Scholar 

  21. Pandres D. Jr: Quantum unified field theory from enlarged coordinate transformation group II. Phys. Rev. D 30, 317–324 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  22. Synge, J.L.: Relativity: The General Theory. North-Holland Publishing Company, Amsterdam, p. 117, 357 (1960)

  23. Eisenhart L.P.: Riemannian Geometry. Princeton University Press, New Jersey (1964)

    Google Scholar 

  24. Taub, A.H.: In: Hoffmann, B., (ed.) Perspectives in Geometry and Relativity, p. 360. Indiana University Press, Bloomington (1966)

  25. Schrödinger E.: Space-Time Structure, p. 97, 99. Cambridge University Press, fCambridge (1960)

  26. Pandres D. Jr: Unified gravitational and Yang-Mills fields. Int. J. Theor. Phys. 34, 733–759 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pandres D. Jr: Gravitational and electroweak unification. Int. J. Theor. Phys. 38, 1783–1805 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Salam, A.: In: Svartholm, N. (ed.) Proceedings of the 8th Nobel Symposium on Elementary Particle Theory, p. 367. Almquist Forlag, Stockholm (1967)

  29. Weinberg S.: A model of leptons. Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  30. Yang C.N., Mills R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  31. Nakahara M.: Geometry, Topology and Physics, p. 344. Adam Hilger, New York (1990)

    Book  MATH  Google Scholar 

  32. Moriyasu K.: An Elementary Primer for Gauge Theory, p. 52. World Scientific, Singapore (1983)

    Google Scholar 

  33. Pandres D. Jr, Green E.L.: Unified field theory from enlarged transformation group: the inconsistent Hamiltonian. Int. J. Theor. Phys. 42, 1849–1873 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bergmann P.G., Goldberg I.: Dirac bracket transformations in phase space. Phys. Rev. 98, 531–538 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Dirac P.A.M.: Lectures on Quantum Mechanics. Academic Press, New York (1964)

    Google Scholar 

  36. Sundermeyer K.: Constrained Dynamics. Springer-Verlag, Berlin (1982)

    MATH  Google Scholar 

  37. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press (1995)

  38. Pandres D. Jr: Quantum geometry from coordinate transformations relating quantum observers. Int. J. Theor. Phys. 23, 839–842 (1984)

    Article  Google Scholar 

  39. Everett H. III: Relative state formulation of quantum mechanics. Revs. Mod. Phys. 29, 454–462 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  40. Weber J.: General Relativity and Gravitational Waves, p. 147. Interscience Publishers, New York (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Pandres Jr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pandres, D. Gravitational and electroweak unification by replacing diffeomorphisms with larger group. Gen Relativ Gravit 41, 2501–2528 (2009). https://doi.org/10.1007/s10714-009-0788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0788-8

Keywords

  • Gravitation
  • Electroweak
  • Unification
  • Enlarged covariance group