Skip to main content
Log in

Approximate Noether symmetries of the geodesic equations for the charged-Kerr spacetime and rescaling of energy

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using approximate symmetry methods for differential equations we have investigated the exact and approximate symmetries of a Lagrangian for the geodesic equations in the Kerr spacetime. Taking Minkowski spacetime as the exact case, it is shown that the symmetry algebra of the Lagrangian is 17 dimensional. This algebra is related to the 15 dimensional Lie algebra of conformal isometries of Minkowski spacetime. First introducing spin angular momentum per unit mass as a small parameter we consider first-order approximate symmetries of the Kerr metric as a first perturbation of the Schwarzschild metric. We then consider the second-order approximate symmetries of the Kerr metric as a second perturbation of the Minkowski metric. The approximate symmetries are recovered for these spacetimes and there are no non- trivial approximate symmetries. A rescaling of the arc length parameter for consistency of the trivial second-order approximate symmetries of the geodesic equations indicates that the energy in the charged-Kerr metric has to be rescaled and the rescaling factor is r-dependent. This re-scaling factor is compared with that for the Reissner–Nordström metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman, San Francisco (1973)

    Google Scholar 

  2. Fatibene L., Ferraris M., Francaviglia M., Raiteri M.: J. Math. Phys. 42, 1173–1195 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Fatibene L., Ferraris M., Francaviglia M.: Int. J. Geom. Methods Mod. Phys. 2, 373–392 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Komar A.: Phys. Rev. 127, 1411–1418 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Komar A.: Phys. Rev. 129, 1873–1876 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Matzner, R.: J. Math. Phys. 9, 1657–1668; 1063–1067 (1968)

    Google Scholar 

  7. Ibragimov N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiely, Chichester (1999)

    MATH  Google Scholar 

  8. Kara A.H., Mahomed F.M., Qadir A.: Nonlinear Dyn. 51, 183–188 (2008)

    Article  MathSciNet  Google Scholar 

  9. Hussain, I., Mahomed, F.M., Qadir, A.: SIGMA 3, 115, 9pp, arXiv.0712.1089 (2007)

  10. Komar A.: Phys. Rev. 113, 934–936 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Kramer D., Stephani H., MacCullum M.A.H., Herlt E.: Exact Solutions of Einstein Field Equations. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  12. Qadir, A.: Spacetime symmetries and their significance. In: Qadir, A., Saifullah, K. (eds.) Applications of Symmetry Methods. National Centre for Physics, pp. 45–71 (2006)

  13. Lie, S.: Sophus Lie’s 1880 Transformation Group Paper. Math Sci. Press, Brookline (1975). Translated by Michael Ackerman. Comments by Robert Hermann

  14. Choen J.M., de Felice F.: J. Math. Phys. 25, 992–994 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chellathurai V., Dadhich N.: Class. Quantum Gravit. 7, 361–370 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Qadir A., Quamar J.: Europhys. Lett. 2, 423–425 (1986)

    Article  ADS  Google Scholar 

  17. Qadir A.: Europhys. Lett. 2, 427–430 (1986)

    Article  ADS  Google Scholar 

  18. Noether, E.: Invariant variations problems. Nachr. Konig. Gissell. Wissen., Gottingen, Math.-Phys. Kl. 2, 235 (1918). [English translation in Transp. Theory Stat. Phys. 1, 186 (1971)]

  19. Kara A.H., Mahomed F.M.: J. Nonlinear Math. Phys. 9, 60–72 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bokhari A.H., Kara A.H., Kashif A.R., Zaman F.D.: Int. J. Theor. Phys. 45, 1029–1039 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  22. Gazizov R.K.: J. Nonlinear Math. Phys. 3, 96–101 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Wafo Soh C., Mahomed F.M.: Class. Quantum Gravit. 16, 3553–3566 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Feroze T., Kara A.H.: Int. J. Non-linear Mech. 37, 275–280 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Fatibene L., Ferraris M., Francaviglia M., McLenaghan R.G.: Int. J. Geom. Methods Mod. Phys. 43, 3147–3161 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Ovsiannikov L.V.: Group Analysis of Differential Equations. Academic Press, New York (1980)

    Google Scholar 

  27. Carter B.: Commun. Math. Phys. 10, 280–310 (1968)

    MATH  Google Scholar 

  28. Qadir A., Quamar J., Rafique M.: Phys. Lett. A 109, 90–92 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  29. Chandrasekhar S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  30. Qadir, A.: SIGMA. 3, 103, 7pp, arXiv.0711.0814 (2007)

  31. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  32. Feroze T., Mahomed F.M., Qadir A.: Nonlinear Dyn. 45, 65–74 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hall G.S.: Symmetries and Curvature Structure in General Relativity. World Scientific, Singapore (2004)

    Google Scholar 

  34. Szabados L.B.: Living Rev. Relat. 7, 1–140 (2004)

    ADS  Google Scholar 

  35. Cohen J.M., Gautreau R.: Phys. Rev. D. 19, 2273–2279 (1979)

    Article  ADS  Google Scholar 

  36. de La Cruz V., Israel W.: Nuovo Cimento 51, 744–759 (1967)

    Article  ADS  Google Scholar 

  37. Kulkarni R., Chellathurai V., Dadhich N.: Class. Quantum Gravit. 5, 1443–1445 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  38. Qadir A.: General relativity in terms of forces. In: Hussain, F., Qadir, A. (eds) Proceedings of Third Regional Conference on Mathematical Physics, pp. 481–490. World Scientific, Singapore (1990)

    Google Scholar 

  39. Qadir A.: The gravitational force in general relativity. In: Ali, A., Hoodbhoy, P. (eds) M. A. B. Beg Memorial Volume, pp. 159–178. World Scientific, Singapore (1991)

    Google Scholar 

  40. Bokhari A.H., Kara A.H., Kashif A.R., Zaman F.D.: Int. J. Theor. Phys. 46, 2795–2800 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Qadir A., Zafarullah I.: Nuovo Cimento B111, 79–84 (1996)

    ADS  Google Scholar 

  42. Fatibene L., Ferraris M., Francaviglia M.: J. Geom. Methods Mod. Phys. 3, 1341–1347 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Fatibene L., Ferraris M., Francaviglia M.: J. Geom. Methods Mod. Phys. 5, 1065–1068 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Fatibene L., Ferraris M., Francaviglia M., Raiteri M.: Ann. Physics 275, 27–53 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Ferraris, M., Francaviglia, M.: In: Teaneck, N.J. (ed.) General Relativirt and Gravitatuinal Physics, pp. 183–196. World Scientific, Singapore (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrar Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, I., Mahomed, F.M. & Qadir, A. Approximate Noether symmetries of the geodesic equations for the charged-Kerr spacetime and rescaling of energy. Gen Relativ Gravit 41, 2399–2414 (2009). https://doi.org/10.1007/s10714-009-0772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0772-3

Keywords

Navigation