Skip to main content
Log in

Fermion tunneling from a non-static black hole with the internal global monopole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein–Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Zhao R., Zhao Z.: Chin. Phys. Lett. 11, 649 (1994)

    Article  Google Scholar 

  4. Vagenas E.C.: Phys. Lett. B 533, 302 (2002)

    Article  MATH  ADS  Google Scholar 

  5. Kraus P., Wilczek F.: Nucl. Phys. B 437, 231 (1995)

    Article  ADS  Google Scholar 

  6. Hemming S., Keski-Vakkuri E.: Phys. Rev. D 64, 44006 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. Medved A.J.M.: Phys. Rev. D 66, 124009 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kraus P., Wilczek F.: Nucl. Phys. B 437, 231 (1995)

    Article  ADS  Google Scholar 

  9. Zhao R., Zhang L.C., Hu S.Q.: Acta Phys. Sin. 55, 3898 (2006) (in Chinese)

    Google Scholar 

  10. Jiang Q.Q., Wu S.Q., Cai X.: Phys. Lett. B 647, 200 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jiang Q.Q., Wu S.Q., Cai X.: Phys. Rev. D 75, 064029 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jiang Q.Q.: Class. Quant. Gravit. 24, 4391 (2007)

    Article  MATH  ADS  Google Scholar 

  13. Parikh M.K., Wiltzek F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Parikh M.K.: Phys. Lett. B 546, 189 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Zhang J.Y., Zhao Z.: Phys. Lett. B 618, 14 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhang J.Y., Zhao Z.: Mod. Phys. Lett. A 20, 1673 (2005)

    Article  MATH  ADS  Google Scholar 

  17. Zhang J.Y., Zhao Z.: J. High Energy Phys. 05, 10055 (2005)

    Google Scholar 

  18. Zhang J.Y., Zhao Z.: Nucl. Phys. B 725, 173 (2005)

    Article  MATH  ADS  Google Scholar 

  19. Chen D.Y., Yang S.Z.: Gen. Relativ. Gravit. 39, 1503 (2007)

    Article  MATH  ADS  Google Scholar 

  20. Chen D.Y., Yang S.Z.: New J. Phys. 9, 252 (2007)

    Article  ADS  Google Scholar 

  21. Lin H.L., Lin R., Cai M.: Phys. Scr. 75, 774 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Li G.Q.: Europhys. Lett. 76, 203 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Angheben M., Nadalini M., Vanzo L., Zerbini S.: J. High Energy Phys. 05, 014 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jiang Q.Q., Wu S.Q., Cai X.: Phys. Lett. B 651, 65 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jiang Q.Q., Wu S.Q., Cai X.: Phys. Rev. D 73, 064003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu W.B.: Phys. Lett. B 99, 379 (2006)

    Google Scholar 

  27. Li H.L., Yang S.Z.: Europhys. Lett. 79, 20001 (2007)

    Article  ADS  Google Scholar 

  28. Li H.L., Qi D.J., Yang S.Z.: Gen. Relativ. Gravit. 39, 179 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Kerner R., Mann R.B.: Phys. Rev. D 73, 104010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kerner R., Mann R.B.: Phys. Rev. D 75, 084022 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. Li R., Ren J.R.: Phys. Lett. B 661, 370 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Criscienzo Rdi, Vanzo L.: Europhys. Lett. 82, 60001 (2008)

    Article  Google Scholar 

  33. Li R., Ren J.R., Wei S.W.: Class. Quant. Gravit. 25, 125016 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kerner R., Mann R.B.: Phys. Lett. B 665, 277 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zeng X.X., Yang S.Z.: Gen. Relativ. Gravit. 40, 2107 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Chen D.Y., Jiang Q.Q., Zu X.T.: Phys. Lett. B 665, 106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chen D.Y., Yang H.T., Zu X.T.: Eur. Phys. J. C 56, 119 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. Jiang Q.Q.: Phys. Rev. D 78, 044009 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kibble T.W.B.: J. phys. A 9, 1387 (1976)

    Article  ADS  Google Scholar 

  40. Vilenkin A.: Phys. Rep. 121, 263 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  41. Barriola M., Vilenkin A.: Phys. Rev. Lett. 63, 341 (1989)

    Article  ADS  Google Scholar 

  42. Harrari D., Lousto C.: Phys. Rev. D 42, 2626 (1990)

    Article  ADS  Google Scholar 

  43. Chakraborty S., Biswas L.: Int. J. Mod. Phys A 13, 1 (1998)

    Article  MathSciNet  Google Scholar 

  44. Chakraborty S.: Phys. Scr. 58, 294 (1998)

    Article  ADS  Google Scholar 

  45. Bennet D.P., Rhie S.H.: Phys. Rev. Lett. 65, 1709 (1990)

    Article  ADS  Google Scholar 

  46. Dadhich N., Narayan K., Yajnik U.A.: Pramana 50, 307 (1998)

    Article  ADS  Google Scholar 

  47. Qi D.J., Li H.L., Jiang Q.Q.: Int. J. Mod. Phys. A 21, 1529 (2006)

    Article  MATH  ADS  Google Scholar 

  48. Jiang Q.Q., Wu S.Q.: Phys. Lett. B 635, 151 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  49. Yu H.: Phys. Lett. A 182, 353 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  50. Ren J., Zhao Z., Gao C.J.: Chin. Phys. Lett. 22, 2489 (2005)

    Article  ADS  Google Scholar 

  51. Ren J., Zhang J.Y., Zhao Z.: Chin. Phys. Lett. 23, 2019 (2006)

    Article  ADS  Google Scholar 

  52. Yang X.J., Han Y.W., Zhao Z.: Int. J. Mod. Phys. D 12, 1083 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HL., Cai, M. & Lin, R. Fermion tunneling from a non-static black hole with the internal global monopole. Gen Relativ Gravit 41, 2389–2398 (2009). https://doi.org/10.1007/s10714-009-0767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0767-0

Keywords

Navigation