Skip to main content
Log in

Gravitational wave generation in power-law inflationary models

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the generation of gravitational waves in power-law inflationary models. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients. We show that, by looking at the interval of frequencies between 10−5 and 105 Hz and also at the GHz range, important information can be obtained, both about the inflationary period itself and about the thermalization regime between the end of inflation and the beginning of the radiation-dominated era. We thus deem the development of gravitational wave detectors, covering the MHz/GHz range of frequencies, to be an important task for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen B.: Phys. Rev. D 37, 2078 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  2. Allen, B.: In: Marck, J.-A., Lasota, J.-P. (eds.) Proceedings of the Les Houches School on Astrophysical Sources of Gravitational Waves (Les Houches, France, 1995), p. 373. Cambridge University Press, London (1997)

  3. Grishchuk L.P.: Sov. Phys. JETP 40, 409 (1974)

    ADS  Google Scholar 

  4. Starobinsky A.A.: . JETP Lett. 30, 682 (1979)

    ADS  Google Scholar 

  5. Rubakov V.A., Sazhin M.V., Veryaskin A.V.: Phys. Lett. B 115, 189 (1982)

    Article  ADS  Google Scholar 

  6. Fabbri R., Pollock M.D.: Phys. Lett. B 125, 445 (1983)

    Article  ADS  Google Scholar 

  7. Abbott L.F., Wise M.B.: Nucl. Phys. B 244, 541 (1984)

    Article  ADS  Google Scholar 

  8. Abbott L.F., Harari D.D.: Nucl. Phys. B 264, 487 (1986)

    Article  ADS  Google Scholar 

  9. URL http://universe.nasa.gov/program/bbo.html

  10. Seto N., Kawamura S., Nakamura T.: Phys. Rev. Lett. 87, 221103 (2001)

    Article  ADS  Google Scholar 

  11. Sahni V.: Phys. Rev. D 42, 453 (1990)

    Article  ADS  Google Scholar 

  12. Souradeep T., Sahni V.: Mod. Phys. Lett. A 7, 3541 (1992)

    Article  ADS  Google Scholar 

  13. Bernard Ph., Gemme G., Parodi R., Picasso E.: Rev. Sci. Instrum. 72, 2428 (2001)

    Article  ADS  Google Scholar 

  14. Cruise A.M., Ingley R.M.J.: Class. Quantum Grav. 22, S479 (2005)

    Article  ADS  Google Scholar 

  15. Traschen J.H., Brandenberger R.H.: Phys. Rev. D 42, 2491 (1990)

    Article  ADS  Google Scholar 

  16. Kofman L.A., Linde A.D., Starobinsky A.A.: Phys. Rev. D 56, 3258 (1997)

    Article  ADS  Google Scholar 

  17. Khlebnikov S., Tkachev I.: Phys. Rev. D 56, 653 (1997)

    Article  ADS  Google Scholar 

  18. Easther R., Lim E.A.: J. Cosmol. Astropart. Phys. 04, 010 (2006)

    ADS  MathSciNet  Google Scholar 

  19. Sá P.M., Henriques A.B.: Phys. Rev. D 77, 064002 (2008)

    Article  ADS  Google Scholar 

  20. Parker L.: Phys. Rev. 183, 1057 (1969)

    Article  MATH  ADS  Google Scholar 

  21. Moorhouse R.G., Henriques A.B., Mendes L.E.: Phys. Rev. D 50, 2600 (1994)

    Article  ADS  Google Scholar 

  22. Mendes L.E., Henriques A.B., Moorhouse R.G.: Phys. Rev. D 52, 2083 (1995)

    Article  ADS  Google Scholar 

  23. Lucchin F., Matarrese S.: Phys. Rev. D 32, 1316 (1985)

    Article  ADS  Google Scholar 

  24. Guth A.H., Pi S.-Y.: Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  25. Hawking S.W.: Phys. Lett. B 115, 295 (1982)

    Article  ADS  Google Scholar 

  26. Starobinsky A.A.: Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  27. Bardeen J.M., Steinhardt P.J., Turner M.S.: Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  28. Smith T.L., Kamionkowski M., Cooray A.: Phys. Rev. D 73, 023504 (2006)

    Article  ADS  Google Scholar 

  29. Liddle A.R., Lyth D.H.: Phys. Lett. B 291, 391 (1992)

    Article  ADS  Google Scholar 

  30. Kosowsky A., Turner M.S.: Phys. Rev. D 52, R1739 (1995)

    Article  ADS  Google Scholar 

  31. Lyth D.H.: Phys. Rev. Lett. 78, 1861 (1997)

    Article  ADS  Google Scholar 

  32. Salam A., Sezgin E.: Phys. Lett. B 147, 47 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Anchordoqui L., Goldberg H., Nawata S., Nuñez C.: Phys. Rev. D 76, 126005 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Henriques, A.B.: Class. Quantum Grav. 21, 3057 (2004); 24, E6431 (2007)

  35. Turner M.S.: Phys. Rev. D 28, 1243 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo M. Sá.

Additional information

This work was supported in part by the Fundaç ão para a Ciência e a Tecnologia, Portugal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sá, P.M., Henriques, A.B. Gravitational wave generation in power-law inflationary models. Gen Relativ Gravit 41, 2345–2359 (2009). https://doi.org/10.1007/s10714-009-0761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0761-6

Keywords

Navigation