General Relativity and Gravitation

, Volume 41, Issue 4, pp 691–705 | Cite as

Superstring perturbation theory

  • Ido AdamEmail author
Open Access
Review Article


The state of superstring perturbation theory is reviewed with an emphasis on the state of the pure spinor superstring perturbation theory. We begin with a brief summary of the state of perturbation theory in the Ramond–Neveu–Schwarz and in the Green–Schwarz formulations of the superstring. Then we proceed to a quick review of the minimal and non-minimal pure spinor formulations of the superstring and discuss the multi-loop amplitude prescriptions in each of them. We end with a summary and open questions.


Superstring perturbation theory The pure spinor superstring 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Polchinski, J.: String theory. In: Superstring Theory and Beyond, p. 531 Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    D’Hoker E., Phong D.H.: Loop Amplitudes for the Fermionic String. Nucl. Phys. B 278, 225 (1986)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Moore G.W., Nelson P.C., Polchinski J.: Strings and Supermoduli. Phys. Lett. B 169, 47 (1986)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Aoki K., D’Hoker E., Phong D.H.: Unitarity of closed superstring perturbation theory. Nucl. Phys. B 342, 149–230 (1990)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    D’Hoker E., Phong D.H.: Momentum analyticity and finiteness of the one loop superstring amplitude. Phys. Rev. Lett. 70, 3692–3695 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    D’Hoker E., Phong D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    D’Hoker E., Phong D.H.: Conformal scalar fields and chiral splitting on superriemann surfaces. Commun. Math. Phys. 125, 469 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    D’Hoker E., Phong D.H.: Two-loop superstrings I, main formulas. Phys. Lett. B 529, 241–255 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    D’Hoker E., Phong D.H.: Two-loop superstrings II, the chiral measure on moduli space. Nucl. Phys. B 636, 3–60 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    D’Hoker E., Phong D.H.: Two-loop superstrings III, slice independence and absence of ambiguities. Nucl. Phys. B 636, 61–79 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    D’Hoker E., Phong D.H.: Two-loop superstrings IV, the cosmological constant and modular forms. Nucl. Phys. B 639, 129–181 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    D’Hoker E., Phong D.H.: Two-loop superstrings V: gauge slice independence of the N-point function. Nucl. Phys. B 715, 91–119 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    D’Hoker E., Phong D.H.: Two-loop superstrings VI: non-renormalization theorems and the 4-point function. Nucl. Phys. B 715, 3–90 (2005)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    D’Hoker E., Phong D.H.: Asyzygies, modular forms, and the superstring measure, I. Nucl. Phys. B 710, 58–82 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D’Hoker E., Phong D.H.: Asyzygies, modular forms, and the superstring measure, II. Nucl. Phys. B 710, 83–116 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cacciatori S.L., Piazza F.D., van Geemen B.: Modular forms and three loop superstring amplitudes. Nucl. Phys. B 800, 565–590 (2008)zbMATHCrossRefADSGoogle Scholar
  17. 17.
    Matone M., Volpato R.: Higher genus superstring amplitudes from the geometry of moduli spaces. Nucl. Phys. B 732, 321–340 (2006)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Grushevsky S.: Superstring scattering amplitudes in higher genus. (2008)Google Scholar
  19. 19.
    Morozov A.: NSR measures on hyperelliptic locus and non-renormalization of 1, 2, 3-point functions. Phys. Lett. B 664, 116–122 (2008)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Matone M., Volpato R.: Superstring measure and non-renormalization of the three-point amplitude. (2008)Google Scholar
  21. 21.
    Grushevsky S., Manni R.S.: On the cosmological constant for the chiral superstring measure (2008)Google Scholar
  22. 22.
    Green M.B., Schwarz J.H.: Superstring interactions. Nucl. Phys. B 218, 43–88 (1983)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Green M.B., Schwarz J.H., Brink L.: Superfield theory of type II superstrings. Nucl. Phys. B 219, 437–478 (1983)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Green M.B., Schwarz J.H.: Superstring field theory. Nucl. Phys. B 243, 475–536 (1984)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Greensite J., Klinkhamer F.R.: New interactions for superstrings. Nucl. Phys. B 281, 269 (1987)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Greensite J., Klinkhamer F.R.: Contact interactions in closed superstring field theory. Nucl. Phys. B 291, 557 (1987)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Greensite J., Klinkhamer F.R.: Superstring amplitudes and contact interactions. Nucl. Phys. B 304, 108 (1988)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Green M.B., Seiberg N.: Contact interactions in superstring thoery. Nucl. Phys. B 299, 559 (1988)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Restuccia A., Taylor J.G.: Finiteness of type II superstring amplitudes. Phys. Lett. B 187, 267 (1987)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Taylor J.G., Restuccia A: Finiteness of heterotic superstring theories. Phys. Lett. B 187, 273 (1987)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Restuccia A., Taylor J.G.: On the infinites of closed superstring amplitude. Mod. Phys. Lett. A 3, 883 (1988)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Restuccia A., Taylor J.G.: Absence of divergences in type II and heterotic string multiloop amplitudes. Commun. Math. Phys. 112, 447 (1987)zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Restuccia A., Taylor J.G.: The construction of multiloop superstring amplitudes in the light cone gauge. Phys. Rev. D36, 489 (1987)ADSMathSciNetGoogle Scholar
  34. 34.
    Berkovits N.: Super-poincare covariant quantization of the superstring. JHEP 04, 018 (2000)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Berkovits, N.: ICTP lectures on covariant quantization of the superstring (2002)Google Scholar
  36. 36.
    Siegel W.: Classical superstring mechanics. Nucl. Phys. B 263, 93 (1986)CrossRefADSGoogle Scholar
  37. 37.
    Berkovits N.: Explaining the pure spinor formalism for the superstring. JHEP 01, 065 (2008)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Berkovits N.: Cohomology in the pure spinor formalism for the superstring. JHEP 09, 046 (2000)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Berkovits N.: Covariant quantization of the superstring. Nucl. Phys. Proc. Suppl. 127, 23–29 (2004)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Berkovits N., Vallilo B.C.: Consistency of super-Poincare covariant superstring tree amplitudes. JHEP 07, 015 (2000)CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Berkovits N.: Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring. JHEP 09, 047 (2004)CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Berkovits N., Chandia O.: Massive superstring vertex operator in D = 10 superspace. JHEP 08, 040 (2002)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Anguelova L., Grassi P.A., Vanhove P.: Covariant one-loop amplitudes in D = 11. Nucl. Phys. B 702, 269–306 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Mafra C.R.: Four-point one-loop amplitude computation in the pure spinor formalism. JHEP 01, 075 (2006)CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Berkovits N.: Super-poincare covariant two-loop superstring amplitudes. JHEP 01, 005 (2006)CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Berkovits N., Mafra C.R.: Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms. . Phys. Rev. Lett. 96, 011602 (2006)CrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Mafra C.R.: Pure spinor superspace identities for massless four-point kinematic factors. JHEP 04, 093 (2008)CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Aisaka Y., Kazama Y.: Origin of pure spinor superstring. JHEP 05, 046 (2005)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Berkovits N.: Pure spinor formalism as an N = 2 topological string. JHEP 10, 089 (2005)CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Berkovits N., Nekrasov N.: Multiloop superstring amplitudes from non-minimal pure spinor formalism. JHEP 12, 029 (2006)CrossRefADSMathSciNetGoogle Scholar
  51. 51.
    Berkovits N.: New higher-derivative R**4 theorems. Phys. Rev. Lett. 98, 211601 (2007)CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Berkovits N., Mafra C.R.: Some superstring amplitude computations with the non-minimal pure spinor formalism. JHEP 11, 079 (2006)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)PotsdamGermany

Personalised recommendations