Advertisement

General Relativity and Gravitation

, Volume 40, Issue 12, pp 2619–2626 | Cite as

Covariant anomaly and Hawking radiation from the modified black hole in the rainbow gravity theory

  • Jun-Jin Peng
  • Shuang-Qing Wu
Research Article

Abstract

Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv: 0707. 2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified formalism, we apply the covariant anomaly cancellation method to investigate Hawking radiation from a modified Schwarzschild black hole in the theory of rainbow gravity. Hawking temperature of the gravity’s rainbow black hole is derived from the energy-momentum flux by requiring it to cancel the covariant gravitational anomaly at the horizon. We stress that this temperature is exactly the same as that calculated by the method of cancelling the consistent anomaly.

Keywords

Hawking radiation Gravity’s rainbow Covariant anomaly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Magueijo, J., Smolin, L.: Phy. Rev. Lett. 88, 190403 (2002). hep-th/0112090CrossRefADSGoogle Scholar
  2. 2.
    Magueijo, J., Smolin, L.: Phy. Rev. D 67, 044017 (2003). hep-th/0207085CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Magueijo, J., Smolin, L.: Class. Quantum Grav. 21, 1725 (2004). gr-qc/0305055zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Ling, Y., Hu, B., Li, X.: Phys. Rev. D 73, 045015 (2006). gr-qc/0512083CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Ling, Y., Li X., Zhang, H.B.: gr-qc/0512084Google Scholar
  6. 6.
    Liu, C.Z., Zhu, J.Y.: gr-qc/0703055Google Scholar
  7. 7.
    Liu, C.Z., Zhu, J.Y.: gr-qc/0703058Google Scholar
  8. 8.
    Galan, P., A. Mena Marugan, G.: Phys. Rev. D 74, 044035 (2006). gr-qc/0608061CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Amelino-Camelia, G., Arzano, M., Ling, Y., Mandanici, G.: Class. Quantum Grav. 23, 2585 (2006). gr-qc/0506110zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005). gr-qc/0502074CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. Lett. 96, 151302 (2006). hep-th/0602146CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. D 74, 044017 (2006). hep-th/0606018CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Murata, K., Soda, J.: Phys. Rev. D 74, 044018 (2006). hep-th/0606069CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Iso, S., Morita, T., Umetsu, H.: J. High Energy Phys. 04, 068 (2007). hep-th/0612286CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Vagenas, E.C., Das S., J.: High Energy Phys. 10, 025 (2006). hep-th/0606077CrossRefADSGoogle Scholar
  16. 16.
    Xu, Z.B., Chen, B.: Phys. Rev. D 75, 024041 (2007). hep-th/0612261CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Chen, B., He, W.: arXiv:0705.2984 [gr-qc] (2007)Google Scholar
  18. 18.
    Setare, M.R.: Eur. Phys. J. C 49, 865 (2007). hep-th/0608080CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Xiao, K., Liu, W.B., Zhang, H.B.: Phys. Lett. B 647, 482 (2007). hep-th/0702199CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Miyamoto, U., Murata, K.: Phys. Rev. D 77, 024020 (2008). arXiv:0705.3150 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Murata, K., Miyamoto, U.: Phys. Rev. D 76, 084038 (2007). arXiv:0707.0168 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Shin, H., Kim W., J.: High Energy Phys. 06, 012 (2007). arXiv:0705.0265 [hep-th]CrossRefADSGoogle Scholar
  23. 23.
    Kim, W., Shin, H.: J. High Energy Phys. 07, 070 (2007). arXiv:0706.3563 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 75, 064029 (2007). hep-th/0701235CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Wu, S.Q.: Phys. Rev. D 76, 029904(E) (2007)ADSGoogle Scholar
  26. 26.
    Jiang, Q.Q., Wu, S.Q.: Phys. Lett. B 647, 200 (2007). hep-th/0701002CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Lett. B 651, 58 (2007). hep-th/0701048CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Lett. B 651, 65 (2007). arXiv:0705.3871 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Jiang, Q.Q.: Class. Quantum Grav. 24, 4391 (2007). arXiv:0705.2068 [hep-th]zbMATHCrossRefADSGoogle Scholar
  30. 30.
    Wu, S.Q., Peng, J.J.: Class. Quantum Grav. 24, 5123 (2007). arXiv:0706.0983 [hep-th]zbMATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Peng, J.J., Wu, S.Q.: Chin. Phys. 17, 825 (2008). arXiv:0705.1225 [hep-th]CrossRefGoogle Scholar
  32. 32.
    Banerjee, R., Kulkarni, S.: Phys. Rev. D 77, 024018 (2008). arXiv:0707.2449 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Alvarez-Gaume, L., Witten, E.: Nucl. Phys. B 234, 269 (1984)CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    Bardeen, W.A., Zumino, B.: Nucl. Phys. B 244, 421 (1984)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Bertlmann, R., Kohlprath, E.: Ann. Phys. (N.Y.) 288, 137 (2001). hep-th/0011067zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Physical Science and TechnologyCentral China Normal UniversityWuhanPeople’s Republic of China

Personalised recommendations