Skip to main content
Log in

A note on conserved charges of asymptotically flat and anti-de Sitter spaces in arbitrary dimensions

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The calculation of conserved charges of black holes is a rich problem, for which many methods are known. Until recently, there was some controversy on the proper definition of conserved charges in asymptotically anti-de Sitter (AdS) spaces in arbitrary dimensions. This paper provides a systematic and explicit Hamiltonian derivation of the energy and the angular momenta of both asymptotically flat and asymptotically AdS spacetimes in any dimension D  ≥  4. This requires as a first step a precise determination of the asymptotic conditions of the metric and of its conjugate momentum. These conditions happen to be achieved in ellipsoidal coordinates adapted to the rotating solutions. The asymptotic symmetry algebra is found to be isomorphic either to the Poincaré algebra or to the so(D − 1,2) algebra, as expected. In the asymptotically flat case, the boundary conditions involve a generalization of the parity conditions, introduced by Regge and Teitelboim, which are necessary to make the angular momenta finite. The charges are explicitly computed for Kerr and Kerr–AdS black holes for arbitrary D and they are shown to be in agreement with thermodynamical arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbons G.W., Perry M.J. and Pope C.N. (2005). The first law of thermodynamics for Kerr–anti-de Sitter black holes, Class. Quant. Grav. 22: 1503. hep-th/0408217

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Ashtekar A. and Magnon A. (1984). Asymptotically anti-de Sitter space-times. Class. Quant. Grav. 1: L39

    Article  ADS  MathSciNet  Google Scholar 

  3. Ashtekar A. and Das S. (2000). Asymptotically anti-de Sitter space-times: Conserved quantities. Class. Quant. Grav. 17: L17. hep-th/9911230

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Regge T. and Teitelboim C. (1974). Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88: 286

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Abbott L.F. and Deser S. (1974). Stability of gravity with a cosmological constant. Nucl. Phys. 88: 286

    Google Scholar 

  6. Deser S., Kanik I. and Tekin B. (2005). Conserved charges of higher D Kerr–AdS spacetimes. Class. Quant. Grav. 22: 3383

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Deser S. and Tekin B. (2007). New energy definition for higher-curvature gravities. Phys. Rev. D 75: 084032. gr-qc/0701140

    Article  ADS  MathSciNet  Google Scholar 

  8. Gibbons G.W., Hawking S.W., Horowitz G.T. and Perry M.J. (1983). Positive mass theorems for black holes. Commun. Math. Phys. 88: 295

    Article  ADS  MathSciNet  Google Scholar 

  9. Gibbons G.W., Hull C.M. and Warner N.P. (1983). The stability of gauged supergravity. Nucl. Phys. B 218: 173

    Article  ADS  MathSciNet  Google Scholar 

  10. Iyer V. and Wald R.M. (1994). Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50: 846. gr-qc/9403028

    Article  ADS  MathSciNet  Google Scholar 

  11. Wald R.M. and Zoupas A. (2000). A general definition of conserved charge and a proposal for dynamical black hole entropy. Phys. Rev. D 61: 084027. gr-qc/9911095

    Article  ADS  MathSciNet  Google Scholar 

  12. Hollands, S., Ishibashi, A., Marolf, D.: Comparison between various notions of conserved charges in asymptotically AdS-spacetimes. hep-th/0503045

  13. Cai R. and Cao L. (2006). Conserved charges in even-dimensional asymptotically locally anti-de Sitter space-times. JHEP, 0603: 083. hep-th/0601101

    Article  ADS  MathSciNet  Google Scholar 

  14. Anderson I.M. and Torre C.G. (1996). Asymptotic conservation laws in field theory. Phys. Rev. Lett. 77: 4109. hep-th/9608008

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Barnich G. and Brandt F. (2002). Covariant theory of asymptotic symmetries, conservation laws and central charges. Nucl. Phys. B 633: 3. hep-th/0111246

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Katz J., Bicak J. and Lynden-Bell D. (1997). Relativistic conservation laws and integral constrains for large cosmological perturbations. Phys. Rev. D 55: 5957. gr-qc/0504041

    Article  ADS  MathSciNet  Google Scholar 

  17. Deruelle N. and Katz J. (2005). On the mass of a Kerr–anti-de Sitter spacetime in d dimensions. Class. Quant. Grav. 22: 421. gr-qc/0410135

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Aliev A.N. (2007). Electromagnetic properties of Kerr–anti-de Sitter black holes. Phys. Rev. D 75: 084041. hep-th/0702129

    Article  ADS  MathSciNet  Google Scholar 

  19. Julia B. and Silva S. (1998). Currents and superpotentials in classical gauge invariant theories. I. Local results with applications to perfect fluids and general relativity. Class. Quant. Grav. 15: 2173. gr-qc/9804029

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Silva S. (1999). On superpotentials and charge algebras of gauge theories. Nucl. Phys. B 558: 391–415. hep-th/9809109

    Article  MATH  ADS  Google Scholar 

  21. Julia B. and Silva S. (2000). Currents and superpotentials in classical gauge invariant theories. II. Global aspects and the example of affine gravity, Class. Quant. Grav. 17: 4733. gr-qc/0005127

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Aros R., Contreras M., Olea R., Troncoso R. and Zanelli J. (2000). Conserved charges for gravity with locally AdS asymptotics. Phys. Rev. Lett. 84: 1647. gr-qc/9909015

    Article  ADS  Google Scholar 

  23. Aros R., Contreras M., Olea R., Troncoso R. and Zanelli J. (2000). Conserved charges for even dimensional asymptotically AdS gravity theories. Phys. Rev. D 62: 044002. hep-th/9912045

    Article  ADS  MathSciNet  Google Scholar 

  24. Obukhov Y. and Rubilar G.F. (2006). Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry. Phys. Rev. D 74: 064002. gr-qc/0608064

    Article  ADS  MathSciNet  Google Scholar 

  25. Henningson M. and Skenderis K. (1998). The holographic Weyl anomaly. JHEP 9807: 023. hep-th/ 9806087

    Article  ADS  MathSciNet  Google Scholar 

  26. Balasubramanian V. and Kraus P. (1999). A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208: 413. hep-th/9902121

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Barnich G. and Compère G. (2005). Generalized Smarr relation for Kerr AdS black holes from improved surface integrals. Phys. Rev. D 71: 044016. gr-qc/0412029

    Article  ADS  MathSciNet  Google Scholar 

  28. Olea R. (2005). Mass, angular momentum and thermodynamics in four-dimensional Kerr–AdS black holes. JHEP 0510: 067. hep-th/059179

    MathSciNet  Google Scholar 

  29. Olea R. (2007). Regularisation of odd-dimensional AdS gravity: Kounterterms. JHEP 0704: 073

    Article  ADS  MathSciNet  Google Scholar 

  30. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: an Introduction to Current Research, New York (1962)

  31. Henneaux M. and Teitelboim C. (1985). Asymptotically anti-de Sitter spaces. Commun. Math. Phys. 98: 391

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Henneaux M. (1986). Asymptotically anti-de Sitter universes in d  = 3, 4 and higher dimensions. In: Ruffini, R. (eds) Proceedings of the Fourth Marcel Grossman meetings on General Relativity., pp. Elsevier Science Publisher, London

    Google Scholar 

  33. Gibbons G.W., Lü H., Page D.N. and Pope C.N. (2005). The general Kerr–de Sitter metrics in all dimensions. J. Geom. Phys. 53: 49. hep-th/0404008

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Dirac P.A.M. (1959). Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 114: 924

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian systems. Lecture Notes of a Lesson Cycle in Academia Nazionale dei Lincei, Rome (1976)

  36. Wald R.M. (1984). General Relativity. University of Chicago Press, Chicago

    MATH  Google Scholar 

  37. Misner C.W., Thorne K.S. and Wheeler J.A. (1999). Gravitation, 22nd edn. Freeman, New York

    Google Scholar 

  38. Brown J.D. and Henneaux M. (1986). On the Poisson brackets of differentiable generators in classical field theory. J. Math. Phys. 27: 489

    Article  ADS  MathSciNet  Google Scholar 

  39. Brown J.D. and Henneaux M. (1986). Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104: 207

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Myers R.C. and Perry M.J. (1986). Black holes in higher dimensional space-times. Ann. Phys. 172: 304

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Barnich G., Brandt F. and Claes K. (2004). Asymptotically anti-de sitter space-times: symmetries and conservation laws revisited. Nucl. Phys. 127: 114

    Article  MathSciNet  Google Scholar 

  42. Henneaux M., Martinez C., Troncoso R. and Zanelli J. (2002). Black holes and asymptotics of 2+1 gravity coupled to a scalar field. Phys. Rev. D 65: 104007. hep-th/0201170

    Article  ADS  MathSciNet  Google Scholar 

  43. Winstanley E. (2003). On the existence of conformally coupled scalar field hair for black holes in (anti-)de Sitter space, Found. Phys. 33: 111. gr-qc/0205092

    MathSciNet  Google Scholar 

  44. Sudarsky D. and Gonzalez J.A. (2003). On black hole scalar hair in asymptotically anti-de Sitter spacetimes. Phys. Rev. D 67: 024038. gr-qc/0207069

    Article  ADS  MathSciNet  Google Scholar 

  45. Henneaux M., Martinez C., Troncoso R. and Zanelli J. (2004). Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch. Phys. Rev. D 70: 044034. hep-th/0404236

    Article  ADS  MathSciNet  Google Scholar 

  46. Hertog T. and Maeda K. (2004). Black hole with scalar hair and asymptotics in N = 8 supergravity. JHEP 0407: 051. hep-th/0404261

    Article  ADS  MathSciNet  Google Scholar 

  47. Hertog T. and Maeda K. (2005). Stability and thermodynamics of AdS black holes with scalar hair. Phys. Rev. D 71: 024001. hep-th/0409314

    Article  ADS  MathSciNet  Google Scholar 

  48. Henneaux M., Martínez C., Troncoso R. and Zanelli J. (2007). Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields. Ann. Phys. 322: 824. hep-th/0603185

    Article  MATH  ADS  Google Scholar 

  49. Amsel A.J. and Marolf D. (2006). Energy bounds in designer gravity. Phys. Rev. D 74: 064006. hep-th/ 0605101

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella Jamsin.

Additional information

The author is a FRIA-FNRS bursar (National Fund for Scientific Research, Belgium).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamsin, E. A note on conserved charges of asymptotically flat and anti-de Sitter spaces in arbitrary dimensions. Gen Relativ Gravit 40, 2569–2590 (2008). https://doi.org/10.1007/s10714-008-0640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0640-6

Keywords

Navigation