Skip to main content
Log in

Non-minimal pp-wave Einstein–Yang–Mills–Higgs model: color cross-effects induced by curvature

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Non-minimal interactions in the pp-wave Einstein–Yang–Mills–Higgs (EYMH) model are shown to give rise to color cross-effects analogous to the magneto-electricity in the Maxwell theory. In order to illustrate the significance of these color cross-effects, we reconstruct the effective (associated, color, and color-acoustic) metrics for the pp-wave non-minimal seven-parameter EYMH model with parallel gauge and scalar background fields. Then these metrics are used as hints for obtaining explicit exact solutions of the non-minimally extended Yang–Mills and Higgs equations for the test fields propagating in the vacuum interacting with curvature. The influence of the non-minimal coupling on the test particle motion is interpreted in terms of the so-called trapped surfaces, introduced in the Analog Gravity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Dell T.H. (1970). The Electrodynamics of Magneto-Electric Media. North-Holland, Amsterdam

    Google Scholar 

  2. Hehl F.W. and Obukhov Yu.N. (2003). Foundations of Classical Electrodynamics: Charge, Flux and Metric. Birkhäuser, Boston

    MATH  Google Scholar 

  3. Feigel A. (2004). Phys. Rev. Lett. 92: 020404

    Article  ADS  Google Scholar 

  4. Obukhov Yu.N. and Hehl F.W. (2007). Phys. Lett. A371: 11

    ADS  Google Scholar 

  5. Hehl, F.W., Obukhov, Yu.N., Rivera, J.P., Schmid, H.: 0708.2069 [gr-qc]

  6. Obukhov, Yu.N., Hehl, F.W.: 0710.2219 [gr-qc]

  7. Balakin A.B. and Lemos J.P.S. (2001). Class. Quant. Grav. 18: 941

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Balakin A.B. and Lemos J.P.S. (2002). Class. Quant. Grav. 19: 4897

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Balakin A.B. and Lemos J.P.S. (2005). Class. Quant. Grav. 22: 1867

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Balakin A.B., Dehnen H. and Zayats A.E. (2007). Phys. Rev. D76: 124011

    ADS  Google Scholar 

  11. Barceló C., Liberati S. and Visser M. (2005). Liv. Rev. Rel. 8: 12

    Google Scholar 

  12. Novello,M., Visser, M., Volovik, G. (eds.) Artificial Black Holes. World Scientific, Singapore (2002)

    Google Scholar 

  13. Volovik G.E. (2003). The Universe in a Helium Droplet. Clarendon, Oxford

    MATH  Google Scholar 

  14. Maugin G.A. (1978). J. Math. Phys. 19: 1206

    Article  MATH  ADS  Google Scholar 

  15. Gordon W. (1923). Ann. Phys. 72: 421

    Article  Google Scholar 

  16. Quan Pham Mau (1957). Arch. Rat. Mech. Anal. 1: 54

    Article  Google Scholar 

  17. Perlick V. (2000). Ray Optics, Fermat’s Principle and Applications to General Relativity. Springer, Berlin

    MATH  Google Scholar 

  18. Balakin A.B. and Zimdahl W. (2005). Gen. Relat. Grav. 37: 1731

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Rubakov V. (2002). Classical Theory of Gauge Fields. Princeton University Press, Princeton and Oxford

    MATH  Google Scholar 

  20. Buchbinder I.L., Odintsov S.D. and Shapiro I.L. (1992). Effective Action in Quantum Gravity. Institute of Physics Publishing, Bristol and Philadelphia

    Google Scholar 

  21. Balakin A.B. and Zayats A.E. (2006). Grav. Cosmol. 12: 302

    MATH  ADS  MathSciNet  Google Scholar 

  22. Balakin A.B. and Zayats A.E. (2007). Phys. Lett. B644: 294

    ADS  MathSciNet  Google Scholar 

  23. Balakin A.B., Sushkov S.V. and Zayats A.E. (2007). Phys. Rev. D75: 084042

    ADS  MathSciNet  Google Scholar 

  24. Stephani H., Kramer D., MacCallum M.A.H., Hoenselaers C. and Herlt E. (2003). Exact Solutions to Einstein’s Field Equations. Cambridge University Press, New York

    Google Scholar 

  25. Yasskin P.B. (1975). Phys. Rev. D12: 2212

    ADS  MathSciNet  Google Scholar 

  26. Gal’tsov, D.V.: Particles and Fields in the Environment of Black Holes (in Russian). MGU, Moscow (1986)

  27. Drummond I.T. and Hathrell S.J. (1980). Phys. Rev. D22: 343

    ADS  MathSciNet  Google Scholar 

  28. Balakin A.B. (1997). Class. Quant. Grav. 14: 2881

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Balakin A.B., Kerner R. and Lemos J.P.S. (2001). Class. Quant. Grav. 18: 2217

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Synge J.L. (1971). Relativity: The General Theory. North-Holland, Amsterdam

    Google Scholar 

  31. Misner C.W., Thorne K.S. and Wheeler J.A. (1973). Gravitation. Freeman, San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Zayats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakin, A., Dehnen, H. & Zayats, A. Non-minimal pp-wave Einstein–Yang–Mills–Higgs model: color cross-effects induced by curvature. Gen Relativ Gravit 40, 2493–2513 (2008). https://doi.org/10.1007/s10714-008-0634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0634-4

Keywords

Navigation