Dark Energy from structure: a status report

Abstract

The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein’s theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (“morphon field”) modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Alam, U., Sahni, V., Saini, T.D., Starobinskii, A.A.: Exploring the expanding Universe and Dark Energy using the statefinder diagnostic. Mon. Not. Roy. Astro. Soc. 344, 1057 (2003)

    ADS  Google Scholar 

  2. 2

    Alnes, H., Amarzguioui, M.: Supernova Hubble diagram for off-center observers in a spherically symmetric inhomogeneous universe. Phys. Rev. D 75, 023506 (2007)

    ADS  Google Scholar 

  3. 3

    Alnes, H., Amarzguioui, M., Grøn, Ø.: An inhomogeneous alternative to Dark Energy?. Phys. Rev. D 73, 083519 (2006)

    ADS  Google Scholar 

  4. 4

    Alnes, H., Amarzguioui, M., Grøn, Ø.: Can a dust dominated Universe have accelerated expansion?. JCAP 0701, 007 (2007)

    ADS  Google Scholar 

  5. 5

    Anderson, M.T.: Scalar curvature and geometrization conjectures for 3-manifolds. Comparison Geometry (Berkeley, 1993–94), pp. 49–82, Math. Sci. Res. Inst. Publ., vol. 30, Cambridge University Press, Cambridge (1997)

  6. 6

    Arbey, A.: Dark fluid: A complex scalar field to unify Dark Energy and Dark Matter. Phys. Rev. D. 74, 043516 (2006)

    ADS  Google Scholar 

  7. 7

    Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L.(eds) Gravitation, pp. 227–265. Wiley, New York (1962)

    Google Scholar 

  8. 8

    Astier, P. et al.: The Supernova Legacy Survey: measurement of Ω m , ΩΛ and w from the first year data set. Astron. & Astrophys. 447, 31 (2006)

    ADS  Google Scholar 

  9. 9

    Aurich, R., Steiner, F.: The cosmic microwave background for a nearly flat compact hyperbolic universe. Mon. Not. Roy. Astro. Soc. 323, 1016 (2001)

    ADS  Google Scholar 

  10. 10

    Aurich, R., Steiner, F.: Dark Energy in a hyperbolic universe. Mon. Not. Roy. Astro. Soc. 334, 735 (2002)

    ADS  Google Scholar 

  11. 11

    Bahcall, N., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The Cosmic Triangle: revealing the state of the Universe. Science 284, 1481 (1999)

    ADS  Google Scholar 

  12. 12

    Barrow, J.D., Tsagas, C.G.: Averaging anisotropic cosmologies. Class. Quant. Grav. 24, 1023 (2007)

    MATH  ADS  MathSciNet  Google Scholar 

  13. 13

    Biesiada, M.: Information-theoretic model selection applied to supernovae data. JCAP 0702, 003 (2007)

    ADS  Google Scholar 

  14. 14

    Bildhauer, S.: Remarks on possible backreactions of inhomogeneities on expanding universes. Prog. Theor. Phys. 84, 444 (1990)

    ADS  Google Scholar 

  15. 15

    Bildhauer, S., Buchert, T., Kasai, M.: Solutions in Newtonian cosmology—the pancake theory with cosmological constant. Astron. Astrophys. 263, 23 (1992)

    ADS  Google Scholar 

  16. 16

    Bildhauer, S., Futamase, T.: The Cosmic Microwave Background in a globally inhomogeneous universe. Mon. Not. Roy. Astron. Soc. 249, 126 (1991)

    ADS  Google Scholar 

  17. 17

    Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and “apparent” acceleration: an investigation. arXiv:astro-ph/0606703 (2006)

  18. 18

    Blanchard, A.: Cosmological parameters: where are we?. Astrophys. Space Sci. 290, 135 (2004)

    ADS  Google Scholar 

  19. 19

    Blanchard, A., Douspis, M., Rowan-Robinson, M., Sarkar, S.: An alternative to the cosmological “concordance model”. Astron. Astrophys. 412, 35 (2003)

    MATH  ADS  Google Scholar 

  20. 20

    Blumenhagen, R., Kors, B., Lüst, D., Stieberger, S.: Four-dimensional string compactifications with D-branes, orientifolds and fluxes. Phys. Rep. 445, 1 (2007)

    ADS  MathSciNet  Google Scholar 

  21. 21

    Boersma, J.P.: Averaging in cosmology. Phys. Rev. D 57, 798 (1998)

    ADS  Google Scholar 

  22. 22

    Bolejko, K.: Cosmological applications of the Szekeres model. In: Golovin, A., Ivashchenko, G., Simon, A. (eds.) 13th Young Scientists’ Conference on Astronomy and Space Physics. Kyiv University Press, arXiv:astro-ph/0607130 (2006)

  23. 23

    Bonvin, C., Durrer, R., Gasparini, M.A.: Fluctuations of the luminosity distance. Phys. Rev. D 73, 023523 (2006)

    ADS  Google Scholar 

  24. 24

    Brandenberger, R.H., Prokopec, T., Mukhanov, V.F.: The entropy of the gravitational field. Phys. Rev. D 48, 2443 (1993)

    ADS  MathSciNet  Google Scholar 

  25. 25

    Brouzakis, N., Tetradis, N., Tzavara, E.: The effect of large scale inhomogeneities on the luminosity distance. JCAP 0702, 013 (2007)

    ADS  Google Scholar 

  26. 26

    Bruni, M., Dunsby, P.K.S., Ellis, G.F.R.: Cosmological perturbations and the physical meaning of gauge-invariant variables. Astrophys. J. 395, 34 (1992)

    ADS  Google Scholar 

  27. 27

    Bruni, M., Ellis, G.F.R., Dunsby, P.K.S.: Gauge-invariant perturbations in a scalar field dominated Universe. Class. Quant. Grav. 9, 921 (1992)

    MATH  ADS  MathSciNet  Google Scholar 

  28. 28

    Bruni, M., Matarrese, S., Pantano, O.: Dynamics of silent universes. Astrophys. J. 445, 958 (1995)

    ADS  Google Scholar 

  29. 29

    Buchert, T.: A class of solutions in Newtonian cosmology and the pancake theory. Astron. Astrophys. 223, 9 (1989)

    ADS  MathSciNet  Google Scholar 

  30. 30

    Buchert, T.: Lagrangian theory of gravitational instability of Friedmann-Lemaî tre cosmologies and the ‘Zel’dovich approximation’. Mon. Not. Roy. Astron. Soc. 254, 729 (1992)

    ADS  Google Scholar 

  31. 31

    Buchert, T.: Averaging hypotheses in Newtonian Cosmology. In: Coles P., et al. (eds.) Mapping, Measuring and Modelling the Universe, Astron. Soc. of the Pacific 94. pp. 349–356; arXiv:astro-ph/9512107 (1996)

  32. 32

    Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 1. dust cosmologies. Gen. Rel. Grav. 32, 105 (2000)

    MATH  ADS  MathSciNet  Google Scholar 

  33. 33

    Buchert, T.: On average properties of inhomogeneous cosmologies. In: Eriguchi Y., et al. (eds.) 9th JGRG Meeting, Hiroshima 1999. pp. 306–321; arXiv:gr-qc/0001056 (2000)

  34. 34

    Buchert, T.: On average properties of inhomogeneous fluids in general relativity: 2. perfect fluid cosmologies. Gen. Rel. Grav. 33, 1381 (2001)

    MATH  ADS  MathSciNet  Google Scholar 

  35. 35

    Buchert, T.: A cosmic equation of state for the inhomogeneous universe: can a global far-from-equilibrium state explain Dark Energy?. Class. Quant. Grav. 22, L113 (2005)

    MATH  ADS  MathSciNet  Google Scholar 

  36. 36

    Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant and the Dark Energy problem. Class. Quant. Grav. 23, 817 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  37. 37

    Buchert, T.: Backreaction issues in relativistic cosmology and the Dark Energy debate. In: Novello M., et al. (eds.) XII. Brazilian School of Cosmology and Gravitation:Mangaratiba, Rio de Janeiro, Brazil 2006. AIP Conf. Proc., vol. 910, pp. 361–380 (2007)

  38. 38

    Buchert, T.: Cosmic Continua—a treatise on self-gravitating collisionless systems in cosmology. Cambridge University Press, Cambridge (in preparation) (2007)

  39. 39

    Buchert, T., Carfora, M.: Regional averaging and scaling in relativistic cosmology. Class. Quant. Grav. 19, 6109 (2002)

    MATH  ADS  MathSciNet  Google Scholar 

  40. 40

    Buchert, T., Carfora, M.: Cosmological parameters are ‘dressed’. Phys. Rev. Lett. 90, 031101–14 (2003)

    ADS  Google Scholar 

  41. 41

    Buchert, T., Carfora, M.: The cosmic quartet: cosmological parameters of a smoothed inhomogeneous spacetime. In: Shibata M., et al. (eds.) 12th JGRG Meeting, Tokyo 2002, pp. 157–161; arXiv:astro-ph/0312621 (2003)

  42. 42

    Buchert, T., Carfora, M.: On the curvature of the present-day Universe. (in preparation) (2007)

  43. 43

    Buchert, T., Domí nguez, A.: Adhesive gravitational clustering. Astron. Astrophys. 438, 443 (2005)

    MATH  ADS  Google Scholar 

  44. 44

    Buchert, T., Ehlers, J.: Averaging inhomogeneous Newtonian Cosmologies. Astron. Astrophys. 320, 1 (1997)

    ADS  Google Scholar 

  45. 45

    Buchert, T., Ellis, G.F.R., Maartens, R.: Effective brane world cosmologies and averaging scales. (in preparation) (2007)

  46. 46

    Koyama, K.: arXiv:0706.1557 [astro-ph] (2007, this volume)

  47. 47

    Buchert, T., Götz, G.: A class of solutions for self-gravitating dust in Newtonian gravity. J. Math. Phys. 28, 2714 (1987)

    MATH  ADS  MathSciNet  Google Scholar 

  48. 48

    Buchert, T., Kerscher, M., Sicka, C.: Backreaction of inhomogeneities on the expansion: the evolution of cosmological parameters. Phys. Rev. D. 62, 043525 (2000)

    ADS  Google Scholar 

  49. 49

    Buchert, T., Larena, J., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar field cosmologies—the ’morphon field’. Class. Quant. Grav. 23, 6379 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  50. 50

    Buchert, T., Ostermann, M.: On relativistic generalizations of Zel’dovich’s approximation. (in preparation) (2007)

  51. 51

    Buchert, T., Rakić, A., Schwarz, D.J.: On the averaging problem in geometric optics and its cosmological consequences. (in preparation) (2007)

  52. 52

    Caldwell, R.R., Doran, M., Müller, C.M., Schäfer, G., Wetterich, C.: Early quintessence in light of the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 591, L75 (2003)

    ADS  Google Scholar 

  53. 53

    Caldwell, R.R., Linder, E.V.: Limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005)

    ADS  Google Scholar 

  54. 54

    Capozziello, S., Cardone, V.F., Troisi, A.: Reconciling Dark Energy models with f(R) theories. Phys. Rev. D. 71, 043503 (2005)

    Google Scholar 

  55. 55

    Capozziello, S., Francaviglia, M.: arXiv:0706.1146 [astro-ph] (2007, this volume)

  56. 56

    Carfora, M., Buchert, T.: Ricci flow deformation of cosmological initial data sets. (2007, in preparation)

  57. 57

    Carfora, M., Marzuoli, A.: Model geometries in the space of Riemannian structures and Hamilton’s flow. Class. Quant. Grav. 5, 659 (1988)

    MATH  ADS  MathSciNet  Google Scholar 

  58. 58

    Carfora, M., Piotrkowska, K.: Renormalization group approach to relativistic cosmology. Phys. Rev. D 52, 4393 (1995)

    ADS  MathSciNet  Google Scholar 

  59. 59

    Célérier, M.-N.: Do we really see a cosmological constant in the supernovae data?. Astron. Astrophys. 353, 63 (2000)

    Google Scholar 

  60. 60

    Célérier, M.-N.: The accelerated expansion of the Universe challenged by an effect of the inhomogeneities. A review. arXiv:astro-ph/0702416 (2007)

  61. 61

    Chuang, C.-H., Gu, J.-A., Hwang, W.-Y.P.: Inhomogeneity-induced cosmic acceleration in a dust Universe. arXiv:astro-ph/0512651 (2005)

  62. 62

    Clarkson, C., Cortes, M., Bassett, B.A.: Dynamical Dark Energy or simply cosmic curvature?. JCAP 0708, 011 (2007)

    ADS  Google Scholar 

  63. 63

    Colberg, J.M., Sheth, R.K., Diaferio, A., Gao, L., Yoshida, N.: Voids in a ΛCDM universe. Mon. Not. Roy. Astron. Soc. 360, 216 (2005)

    ADS  Google Scholar 

  64. 64

    Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Cosmological solutions in Macroscopic Gravity. Phys. Rev. Lett. 95, 151102 (2005)

    ADS  MathSciNet  Google Scholar 

  65. 65

    Coley, A.A., Pelavas, N.: Averaging in spherically symmetric cosmology. Phys. Rev. D 75, 043506 (2007)

    ADS  MathSciNet  Google Scholar 

  66. 66

    Conley, A.J. et al.: Measurement of Ω m , ΩΛ from a blind analysis of Type Ia supernovae with CMAGIC: using color information to verify the acceleration of the Universe. Astrophys. J. 644, 1 (2006)

    ADS  Google Scholar 

  67. 67

    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of Dark Energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  68. 68

    Cornish, N.J., Spergel, D.N., Starkman, G.D., Komatsu, E.: Constraining the topology of the Universe. Phys. Rev. Lett. 92, 201302 (2004)

    ADS  MathSciNet  Google Scholar 

  69. 69

    Das, S., Banarjee, N., Dadhich, N.: Curvature-driven acceleration: a utopia or a reality?. Class. Quant. Grav. 23, 4159 (2006)

    MATH  ADS  Google Scholar 

  70. 70

    Dunsby, P.K.S., Bruni, M., Ellis, G.F.R.: Covariant perturbations in a multifluid cosmological medium. Astrophys. J. 395, 54 (1992)

    ADS  Google Scholar 

  71. 71

    Ehlers, J., Buchert, T.: Newtonian cosmology in Lagrangian formulation: foundations and perturbation theory. Gen. Rel. Grav. 29, 733 (1997)

    MATH  ADS  MathSciNet  Google Scholar 

  72. 72

    Ellis, G.F.R.: Relativistic cosmology—its nature, aims and problems. In: Bertotti, B., de Felice, F., Pascolini, A.(eds) General Relativity and Gravitation, pp. 215–288. D. Reidel Publishing, Dordrecht (1984)

    Google Scholar 

  73. 73

    Ellis, G.F.R., Börner, G., Buchert, T., Ehlers, J., Hogan, C.J., Kirshner, R.P., Press, W.H., Raffelt, R., Thielemann, F.-K., Vanden Bergh, S.: What do we know about global properties of the Universe?. In: Börner, G., Gottlöber, S.(eds) Dahlem Workshop Report ES19 The Evolution of the Universe:Berlin 1995., pp. 51–78. Wiley, Chichester (1997)

    Google Scholar 

  74. 74

    Ellis, G.F.R., Buchert, T.: The Universe seen at different scales. Phys. Lett. A (Einstein Special Issue) 347, 38 (2005)

    ADS  MathSciNet  Google Scholar 

  75. 75

    Ellis, G.F.R., van Elst, H.: Cosmological Models (Cargèse Lectures 1998). In: Lachièze-Rey, M. (eds.) Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology, Cargèse, France, August 17–29, 1998. Kluwer, Boston, NATO Sci. Ser. C 541, 1–116 (1999)

  76. 76

    Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class. Quant. Grav. 21, 223 (2004)

    MATH  ADS  MathSciNet  Google Scholar 

  77. 77

    Ellis, G.F.R., Murugan, J., Tsagas, C.G.: The emergent universe: an explicit construction. Class. Quant. Grav. 21, 233 (2004)

    MATH  ADS  MathSciNet  Google Scholar 

  78. 78

    Ellis, G.F.R., Stoeger, W.: The ‘fitting problem’ in cosmology. Class. Quant. Grav. 4, 1697 (1987)

    MATH  ADS  MathSciNet  Google Scholar 

  79. 79

    van Elst, H., Uggla, C., Lesame, W.M., Ellis, G.F.R., Maartens, R.: Integrability of irrotational silent cosmological models. Class. Quant. Grav. 14, 1151 (1997)

    MATH  ADS  MathSciNet  Google Scholar 

  80. 80

    Enqvist, K., Mattsson, T.: The effect of inhomogeneous expansion on the supernova observations. JCAP 0702, 019 (2007)

    ADS  Google Scholar 

  81. 81

    Evans, A.K.D., Wehus, I.K., Grøn, Ø., Elganøy, Ø.: Geometrical constraints on Dark Energy. Astron. Astrophys. 430, 399 (2005)

    MATH  ADS  Google Scholar 

  82. 82

    Felder, G.N., Kofman, L.: Nonlinear inflaton fragmentation after preheating. Phys. Rev. D 75, 043518 (2007)

    ADS  Google Scholar 

  83. 83

    França, U.: Dark Energy, curvature, and cosmic coincidence. Phys. Lett. B 641, 351 (2006)

    ADS  MathSciNet  Google Scholar 

  84. 84

    Friedmann, A.: On the curvature of space. Gen. Rel. Grav. 31, 1991 (1999); translated by G.F.R. Ellis and H. van Elst from: Über die Krümmung des Raumes. Zeitschrift für Physik 10, 377 (1922)

  85. 85

    Friedmann, A.: On the possibility of a world with constant negative curvature of space. Gen. Rel. Grav. 31, 2001 (1999)

    MATH  ADS  MathSciNet  Google Scholar 

  86. 86

    Friedmann, A.: Addendum Gen. Rel. Grav. 32, 1937 (2000); translated by G.F.R. Ellis and H. van Elst from: Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik 21, 326 (1924)

  87. 87

    Füzfa, A., Alimi, J.-M.: Toward a unified description of Dark Energy and Dark Matter from the AWE hypothesis. Phys. Rev. D 75, 123007 (2007)

    ADS  Google Scholar 

  88. 88

    Futamase, T.: An approximation scheme for constructing inhomogeneous universes in general relativity. Mon. Not. Roy. Astron. Soc. 237, 187 (1989)

    ADS  Google Scholar 

  89. 89

    Futamase, T.: Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681 (1996)

    ADS  Google Scholar 

  90. 90

    Garfinkle, D.: Inhomogeneous spacetimes as a Dark Energy model. Class. Quant. Grav. 23, 4811 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  91. 91

    Giovanelli, R., Dale, D.A., Haynes, M.P., Hardy, E., Campusano, L.E.: No Hubble Bubble in the local Universe. Ap. J. 525, 25 (1999)

    ADS  Google Scholar 

  92. 92

    Gorini, V., Kamenshchik, A., Moschella, U.: Can the Chaplygin gas be a plausible model for Dark Energy?. Phys. Rev. D 67, 063509 (2003)

    ADS  Google Scholar 

  93. 93

    Górski, K.M.: On the pattern of perturbations of the Hubble flow. Astrophys. J. 332, L7 (1988)

    ADS  Google Scholar 

  94. 94

    Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Diff. Geom. 17, 255 (1982)

    MATH  MathSciNet  Google Scholar 

  95. 95

    Hamilton, R.S.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry vol. 2, International Press, pp. 7–136 (1995)

  96. 96

    Hellaby, C.: Volume matching in Tolman models. Gen. Rel. Grav. 20, 1203 (1988)

    ADS  MathSciNet  Google Scholar 

  97. 97

    Hellaby, C.: The mass of the cosmos. Mon. Not. Roy. Astron. Soc. 370, 239 (2006)

    ADS  Google Scholar 

  98. 98

    Hikage, C., Schmalzing, J., Buchert, T., Suto, Y., Kayo, I., Taruya, A., Vogeley, M.S., Hoyle, F., Gott III, J.R., Brinkmann, J.: Minkowski Functionals of SDSS galaxies I: analysis of excursion sets. PASJ 55, 911 (2003)

    ADS  Google Scholar 

  99. 99

    Hosoya, A., Buchert, T., Morita, M.: Information entropy in cosmology. Phys. Rev. Lett. 92, 141302 (2004)

    ADS  MathSciNet  Google Scholar 

  100. 100

    Hui, L., Bertschinger, E.: Local approximations to the gravitational collapse of cold matter. Astrophys. J. 471, 1 (1996)

    ADS  Google Scholar 

  101. 101

    Ichikawa, K., Kawasaki, M., Sekiguchi, T., Takahashi, T.: Implications of Dark Energy parametrizations for the determination of the curvature of the universe. JCAP 0612, 005 (2006)

    ADS  Google Scholar 

  102. 102

    Ishibashi, A., Wald, R.M.: Can the acceleration of our Universe be explained by the effects of inhomogeneities?. Class. Quant. Grav. 23, 235 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  103. 103

    Israel, W.: Non-stationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100, 310 (1976)

    ADS  MathSciNet  Google Scholar 

  104. 104

    Joyce, M., Labini, F.S., Gabrielli, A., Montuori, M., Pietronero, L.: Basic properties of galaxy clustering in the light of recent results from the Sloan Digital Sky Survey. Astron. Astrophys. 443, 11 (2005)

    ADS  Google Scholar 

  105. 105

    Kantowski, R.: Lamé equation for the distance redshift in a partially filled beam Friedmann–Lemaî tre–Robertson–Walker cosmology. Phys. Rev. D 68, 123516 (2003)

    ADS  Google Scholar 

  106. 106

    Kantowski, R., Thomas, R.C.: Distance-redshift in inhomogeneous Ω0  = 1 Friedmann-Lemaî tre–Robertson–Walker cosmology. Ap. J. 561, 591 (2001)

    ADS  Google Scholar 

  107. 107

    Kantowski, R., Kao, J.K., Thomas, R.C.: Distance-redshift relations in inhomogeneous Friedmann–Lemaî tre–Robertson–Walker cosmology. Ap. J. 545, 549 (2000)

    ADS  Google Scholar 

  108. 108

    Kasai, M.: Inhomogeneous cosmological models which are homogeneous and isotropic on average. Phys. Rev. D 47, 3214 (1993)

    ADS  MathSciNet  Google Scholar 

  109. 109

    Kasai, M.: Tetrad-based perturbative approach to inhomogeneous universes: a general relativistic version of the Zel’dovich approximation. Phys. Rev. D 52, 5605 (1995)

    ADS  Google Scholar 

  110. 110

    Kasai, M.: Apparent acceleration through the large-scale inhomogeneities—post-Friedmannian effects of inhomogeneities on the luminosity distance. Prog. Theor. Phys. 117, 1067 (2007)

    MATH  ADS  Google Scholar 

  111. 111

    Kerscher,M.: Statistical analysis of large-scale structure in theUniverse. In:Mecke, K.R., Stoyan ,D. (eds.) Statistical Physics and Spatial Statistics: Lecture Notes in Physics, vol. 554., p. 37, Springer, Berlin (2000)

    Google Scholar 

  112. 112

    Kerscher, M., Buchert, T., Futamase, T.: On the abundance of collapsed objects. Ap. J. 558, L79 (2001)

    ADS  Google Scholar 

  113. 113

    Kerscher, M., Schmalzing, J., Buchert, T., Wagner, H.: Fluctuations in the IRAS 1.2 Jy catalogue. Astron. Astrophys. 333, 1 (1998)

    ADS  Google Scholar 

  114. 114

    Kerscher, M., Mecke, K.R., Schmalzing, J., Beisbart, C., Buchert, T., Wagner, H.: Morphological fluctuations of large-scale structure: the PSCz survey. Astron. Astrophys. 373, 1 (2001)

    ADS  Google Scholar 

  115. 115

    Kerscher, M., Schmalzing, J., Retzlaff, J., Borgani, S., Buchert, T., Gottlöber, S., Müller, V., Plionis, M., Wagner, H.: Minkowski Functionals of Abell/ACO clusters. Mon. Not. Roy. Astron. Soc. 284, 73 (1997)

    ADS  Google Scholar 

  116. 116

    Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)

    ADS  Google Scholar 

  117. 117

    Kolb, E.W., Matarrese, S., Notari, A., Riotto, A.: Effect of inhomogeneities on the expansion rate of the Universe. Phys. Rev. D 71, 023524 (2005)

    ADS  Google Scholar 

  118. 118

    Kolb, E.W., Matarrese, S., Riotto, A.: Comments on backreaction and cosmic acceleration. arXiv:astro-ph/0511073 (2005)

  119. 119

    Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without Dark Energy. New J. Phys. 8, 322 (2006)

    ADS  Google Scholar 

  120. 120

    Krasiński, A.: Inhomogeneous cosmological models. Cambridge Univ. Press, (1997)

  121. 121

    Lahav, O.: Observational tests of FLRW world models. Class. Quant. Grav. 19, 3517 (2002)

    MATH  ADS  Google Scholar 

  122. 122

    Larena, J., Alimi, J.-M., Buchert, T., Kunz, M.: Explaining SN1a observations by relativistic kinematical backreaction. (in preparation) (2007)

  123. 123

    Larena, J., Buchert, T., Alimi, J.-M.: Morphed Inflation. (in preparation) (2007)

  124. 124

    Lehoucq, R., Uzan, J.-P., Luminet, J.-P.: Limits of crystallographic methods for detecting space topology. Astron. Astrophys. 363, 1 (2000)

    ADS  Google Scholar 

  125. 125

    Leith, B.M., Ng, S.C.C., Wiltshire, D.L.: Gravitational energy as dark energy: concordance of cosmological tests. Phys. Rev. D 76, 083011 (2007)

    ADS  Google Scholar 

  126. 126

    Li, N., Schwarz, D.J.: On the onset of cosmological backreaction. arXiv:gr-qc/0702043 (2007)

  127. 127

    Liddle, A.R., Scherrer, R.J.: Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 59, 023509 (1999)

    ADS  Google Scholar 

  128. 128

    Linde, A.D., Linde, D.A., Mezhlumian, A.: Non-perturbative amplification of inhomogeneities in a self-reproducing Universe. Phys. Rev. D 54, 2504 (1996)

    ADS  Google Scholar 

  129. 129

    Lu, T.H.C., Hellaby, C.: Obtaining the spacetime metric from cosmological observations. Class. Quant. Grav. 24, 4107 (2007)

    MATH  ADS  MathSciNet  Google Scholar 

  130. 130

    Maartens, R.: Brane World Gravity. Living Rev. Rel. 7, 7 (2004)

    Google Scholar 

  131. 131

    Maartens, R., Ellis, G.F.R., Stoeger, W.R.: Improved limits on anisotropy and inhomogeneity from the cosmic background radiation. Phys. Rev. D. 51, 1525 and 5942 (1995)

    Google Scholar 

  132. 132

    Maartens, R., Ellis, G.F.R., Stoeger, W.R.: Anisotropy and inhomogeneity of the Universe from ΔT / T. Astron. Astrophys. 309, L7 (1996)

    ADS  Google Scholar 

  133. 133

    Marra, V., Kolb, E.W., Matarrese, S., Riotto, A.: On cosmological observables in a swiss-cheese universe. arXiv:astro-ph/0708.3622 (2007)

  134. 134

    Martineau, P., Brandenberger, R.H.: Effects of gravitational backreaction on cosmological perturbations. Phys. Rev. D 72, 023507 (2005)

    ADS  Google Scholar 

  135. 135

    Matarrese, S., Terranova, D.: Post-Newtonian cosmological dynamics in Lagrangian coordinates. Mon. Not. Roy. Astron. Soc. 283, 400 (1996)

    ADS  Google Scholar 

  136. 136

    Mattsson, T., Ronkainen, M.: Exploiting scale dependence in cosmological averaging. arXiv:astro-ph/0708.3673 (2007)

  137. 137

    Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the Universe. Astron. Astrophys. 288, 697 (1994)

    ADS  Google Scholar 

  138. 138

    Mena, F.C., Tod, P.: Lanczos potentials and a definition of gravitational entropy for perturbed FLRW space-times. arXiv:gr-qc/0702057 (2007)

  139. 139

    Mersini-Houghton, L., Wang, Y., Mukherjee, P., Kafexhiu, E.: Nontrivial geometries: bounds on the curvature of the Universe. arXiv:0705.0332 [astro-ph] (2007)

  140. 140

    Mota, B., Gomero, G.I., Rebouças, M.J., Tavakol, R.: What do very nearly flat detectable cosmic topologies look like?. Class. Quant. Grav. 21, 3361 (2004)

    MATH  ADS  Google Scholar 

  141. 141

    Mukhanov, V.F.: Physical foundations of cosmology. Cambridge University Press, (2005)

  142. 142

    Mukhanov, V.F., Abramo, L.R.W., Brandenberger, R.H.: Backreaction problem for cosmological perturbations. Phys. Rev. Lett. 78(78), 1624 (1997)

    ADS  Google Scholar 

  143. 143

    Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

    ADS  MathSciNet  Google Scholar 

  144. 144

    Mustapha, N., Hellaby, C., Ellis, G.F.R.: Large-scale inhomogeneity versus source evolution—can we distinguish them observationally?. Mon. Not. Roy. Astron. Soc. 292, 817 (1997)

    ADS  Google Scholar 

  145. 145

    Nambu, Y., Tanimoto, M.: Accelerating Universe via spatial averaging. arXiv:gr-qc/0507057 (2005)

  146. 146

    Padmanabhan, T.: Dark Energy: the cosmological challenge of the millennium. Curr. Sci. 88, 1057 (2005)

    ADS  Google Scholar 

  147. 147

    Padmanabhan, T.: this volume, arXiv:0705.2533 [gr-qc] (2007)

  148. 148

    Padmanabhan, T., Roy Choudhury, T.: Can the clustered Dark Matter and the smooth Dark Energy arise from the same scalar field?. Phys. Rev. D. 66(1), 081301 (2002)

    ADS  Google Scholar 

  149. 149

    Palle, D.: On the large-scale inhomogeneous Universe and the cosmological constant. Nuovo Cim. 117, 687 (2002)

    ADS  Google Scholar 

  150. 150

    Paranjape, A.: A covariant road to spatial averaging in cosmology: scalar corrections to the cosmological equations. arXiv:0705:2380 [gr-qc] (2007)

  151. 151

    Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaî tre Tolman Bondi models. Class. Quant. Grav. 23, 6955 (2006)

    MATH  ADS  MathSciNet  Google Scholar 

  152. 152

    Paranjape, A., Singh, T.P.: Explicit cosmological coarse graining via spatial averaging. Gen. Rel. Grav. arXiv:astro-ph/0609481 (2006, in press)

  153. 153

    Paranjape, A., Singh, T.P.: The spatial averaging limit of covariant Macroscopic Gravity—scalar corrections to the cosmological equations. Phys. Rev. D 76, 044006 (2007)

    ADS  Google Scholar 

  154. 154

    Parry, M.: A rule of thumb for cosmological backreaction. JCAP 0606, 016 (2006)

    ADS  Google Scholar 

  155. 155

    Peebles, P.J.E., Ratra, B.: The cosmological constant and Dark Energy. Rev. Mod. Phys. 75, 559 (2003)

    ADS  MathSciNet  Google Scholar 

  156. 156

    Penrose, R.: The Emperor’s new Mind: concerning Computers, Minds, and the Laws of Physics. Oxford Univ. Press, (1989)

  157. 157

    Penrose, R.: The Road to Reality: a complete Guide to the Laws of the Universe. Jonathan Cape, London (2004)

    Google Scholar 

  158. 158

    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/ 0211159 (2002)

  159. 159

    Perelman, G.: Ricci flow with surgery on three-manifolds. arXiv:math/0303109 (2003)

  160. 160

    Petersen, P.: Riemannian Geometry. Springer Verlag GTM 171 (1997)

  161. 161

    Prigogine, I.: Non Equilibrium Statistical Mechanics. Interscience Pub., New York (1962)

    Google Scholar 

  162. 162

    Räsänen, S.: Dark Energy from backreaction. JCAP 0402, 003 (2004)

    Google Scholar 

  163. 163

    Räsänen, S.: Backreaction in the Lemaî tre Tolman Bondi model. JCAP 0411, 010 (2004)

    Google Scholar 

  164. 164

    Räsänen, S.: Constraints on backreaction in dust universes. Class. Quant. Grav. 23, 1823 (2006)

    MATH  Google Scholar 

  165. 165

    Räsänen, S.: Accelerated expansion from structure formation. JCAP 0611, 003 (2006)

    Google Scholar 

  166. 166

    Räsänen, S.: Comment on ‘Nontrivial geometries: bounds on the curvature of the Universe’. arXiv:0705.2992 [astro-ph] (2007)

  167. 167

    Raychaudhuri, A.: Relativistic cosmology. Phys. Rev. 98, 1123 (1955)

    MATH  ADS  MathSciNet  Google Scholar 

  168. 168

    Raychaudhuri, A.: Gen. Rel. Grav. 32, 749 (2000)

    MATH  ADS  MathSciNet  Google Scholar 

  169. 169

    Regös, E., Szalay, A.S.: Multipole expansion of the large-scale velocity field—using the tensor window function. Astrophys. J. 345, 627 (1989)

    ADS  Google Scholar 

  170. 170

    Reiris, M.: Large scale (CMC) evolution of cosmological solutions of the Einstein equations with a priori bounded space–time curvature. arXiv: gr-qc/0705.3070 (2007)

  171. 171

    Reiris, M.: Large scale properties of perturbed K =  − 1 Robertson–Walker cosmologies. arXiv: gr-qc/0709.0770 (2007)

  172. 172

    Ruiz-Lapuente, P.: Dark Energy, gravitation and supernovae. Class. Quant. Grav. 24, R91 (2007)

    MATH  MathSciNet  Google Scholar 

  173. 173

    Russ, H., Soffel, M.H., Kasai, M., Börner, G.: Age of the universe: influence of the inhomogeneities on the global expansion factor. Phys. Rev. D 56, 2044 (1997)

    ADS  Google Scholar 

  174. 174

    Sahni, V., Saini, T.D., Starobinskii, A.A., Alam, U.: Statefinder—a new geometrical diagnostic of Dark Energy. JETP Lett. 77, 201 (2003)

    ADS  Google Scholar 

  175. 175

    Sahni, V., Sathyaprakash, B.S., Shandarin, S.F.: Shapefinders: a new shape diagnostic for large-scale structure. Astrophys. J. 495, L5 (1998)

    ADS  Google Scholar 

  176. 176

    Sahni, V., Starobinskii, A.A.: The case for a positive cosmological Λ-term. Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  177. 177

    Schimd, C., Tereno, I.: Scalar-field quintessence by cosmic shear: CFHT data analysis and forecasts for DUNE. J. Phys. A 40, 7105 (2007)

    ADS  Google Scholar 

  178. 178

    Schmalzing, J., Buchert, T.: Beyond Genus Statistics: a unifying approach to the morphology of cosmic structure. Astrophys. J. 482, L1 (1997)

    ADS  Google Scholar 

  179. 179

    Schmalzing, J., Gorski, K.M.: Minkowski Functionals used in the morphological analysis of Cosmic Microwave Background anisotropy maps. Mon. Not. Roy. Astron. Soc. 297, 355 (1998)

    ADS  Google Scholar 

  180. 180

    Schmalzing, J., Buchert, T., Melott, A.L., Sahni, V., Sathyaprakash, B.S., Shandarin, S.F.: Disentangling the Cosmic Web. I. morphology of isodensity contours. Astrophys. J. 526, 568 (1999)

    ADS  Google Scholar 

  181. 181

    Schwarz, D.J.: Accelerated expansion without Dark Energy. In: Brax, P., Martin, J., Uzan, J.-P. (eds.) On the Nature of Dark Energy: 18th IAP Astrophys. Colloq., pp. 331–334, Frontier Paris 2002; arXiv:astro-ph/0209584 (2002)

  182. 182

    Shirokov, M.F., Fisher, I.Z.: Isotropic space with discrete gravitational-field sources. On the theory of a nonhomogeneous isotropic Universe. Sov. Astron. 6, 699 (1963)

    ADS  Google Scholar 

  183. 183

    Smarr, L., York, J.W. Jr.: Kinematical conditions in the construction of spacetime. Phys. Rev. D 17, 2529 (1978)

    ADS  MathSciNet  Google Scholar 

  184. 184

    Sopuerta, C.F.: New study of silent universes. Phys. Rev. D 55, 5936 (1997)

    ADS  Google Scholar 

  185. 185

    Spergel, D.N. et al.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    ADS  Google Scholar 

  186. 186

    Stewart, J.M., Walker, M.: Perturbations of space-times in general relativity. Proc. Roy. Soc. Lond. A 341, 49 (1974)

    ADS  MathSciNet  Article  Google Scholar 

  187. 187

    Stewart, J.M.: Perturbations of Friedmann–Robertson–Walker cosmological models. Class. Quant. Grav. 7, 1169 (1990)

    MATH  ADS  Google Scholar 

  188. 188

    Sugiura, N., Nakao, K., Ida, D., Sakai, N., Ishihara, H.: How do nonlinear voids affect light propagation?. Prog. Theor. Phys. 103, 73 (2000)

    ADS  Google Scholar 

  189. 189

    Tanimoto, M.: Criticality and averaging in cosmology. Prog. Theor. Phys. 102, 1001 (1999)

    ADS  Google Scholar 

  190. 190

    Tomita, K.: Bulk flows and Cosmic Microwave Background dipole anisotropy in cosmological void models. Astrophys. J. 529, 26 (2000)

    ADS  Google Scholar 

  191. 191

    Tomita, K.: Distances and lensing in cosmological void models. Astrophys. J. 529, 38 (2000)

    ADS  Google Scholar 

  192. 192

    Tomita, K.: A local void and the accelerating Universe. Mon. Not. Roy. Astro. Soc. 326, 287 (2001)

    ADS  Google Scholar 

  193. 193

    Uggla, C., van Elst, H., Wainwright, J., Ellis, G.F.R.: Past attractor in inhomogeneous cosmology. Phys. Rev. D 68, 103502 (2003)

    ADS  Google Scholar 

  194. 194

    Uzan, J.-P.: The acceleration of the Universe and the physics behind it. Gen. Rel. Grav. 39, 307 (2007)

    MATH  MathSciNet  Google Scholar 

  195. 195

    Uzan, J.-P., Lehoucq, R., Luminet, J.-P.: A new crystallographic method for detecting space topology. Astron. Astrophys. 351, 766 (1999)

    ADS  Google Scholar 

  196. 196

    Vanden Bergh, N., Wylleman, L.: Silent universes with a cosmological constant. Class. Quant. Grav. 21, 2291 (2004)

    ADS  MathSciNet  Google Scholar 

  197. 197

    Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Systematic corrections to the measured cosmological constant as a result of local inhomogeneity. Phys. Rev. D 76, 083504 (2007)

    ADS  Google Scholar 

  198. 198

    Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  199. 199

    Wiltshire, D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007)

    ADS  Google Scholar 

  200. 200

    Wiltshire, D.L.: Exact solution to the averaging problem in cosmology. arXiv:gr-qc/0709.0732 (2007)

  201. 201

    Zalaletdinov, R.M.: Averaging problem in general relativity, macroscopic gravity and using Einstein’s equations in cosmology. Bull. Astron. Soc. India 25, 401 (1997)

    ADS  Google Scholar 

  202. 202

    Zehavi, I., Riess, A.G., Kirshner, R.P., Dekel, A.: A local Hubble Bubble from Type Ia supernovae?. Astrophys. J. 503, 483 (1998)

    ADS  Google Scholar 

  203. 203

    Zel’dovich, Ya.B.: Fragmentation of a homogeneous medium under the action of gravitation. Astrophysics 6, 164 (1970)

    ADS  Google Scholar 

  204. 204

    Zel’dovich, Ya.B.: Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84 (1970)

    ADS  Google Scholar 

  205. 205

    Zimdahl, W., Schwarz, D.J., Balakin, A.B., Pavón, D.: Cosmic antifriction and accelerated expansion. Phys. Rev. D 64, 063501 (2001)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Buchert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchert, T. Dark Energy from structure: a status report. Gen Relativ Gravit 40, 467–527 (2008). https://doi.org/10.1007/s10714-007-0554-8

Download citation

Keywords

  • Relativistic Cosmology
  • Inhomogeneous Universe Models
  • Backreaction
  • Observational Cosmology
  • Dark Energy