Skip to main content

Hamiltonian approach to frame dragging

Abstract

A Hamiltonian approach makes the phenomenon of frame dragging apparent “up front” from the appearance of the drag velocity in the Hamiltonian of a test particle in an arbitrary metric. Hamiltonian (1) uses the inhomogeneous force equation (4), which applies to non-geodesic motion as well as to geodesics. The Hamiltonian is not in manifestly covariant form, but is covariant because it is derived from Hamilton’s manifestly covariant scalar action principle. A distinction is made between manifest frame dragging such as that in the Kerr metric, and hidden frame dragging that can be made manifest by a coordinate transformation such as that applied to the Robertson–Walker metric in Sect. 2. In Sect. 3 a zone of repulsive gravity is found in the extreme Kerr metric. Section 4 treats frame dragging in special relativity as a manifestation of the equivalence principle in accelerated frames. It answers a question posed by Bell about how the Lorentz contraction can break a thread connecting two uniformly accelerated rocket ships. In Sect. 5 the form of the Hamiltonian facilitates the definition of gravitomagnetic and gravitoelectric potentials.

This is a preview of subscription content, access via your institution.

References

  1. Epstein, K.J.: This particular Hamiltonian, chosen originally because it is the one which reduces to that of special relativity when the space–time metric reduces to the Minkowski form, has the additional property of putting the drag velocity “up front,” literally, in equations (1) and (41). Phys. Essays 5, 133 (1992)

  2. Taylor E.F., Wheeler J.A. (2000). Exploring Black Holes. Addison Wesley Longman, San Francisco

    Google Scholar 

  3. Wald R.M. (1984). General Relativity. University of Chicago Press, Chicago

    MATH  Google Scholar 

  4. Epstein K.J. (1998). Gen. Relat. Grav. 30: 617

    Article  MATH  ADS  Google Scholar 

  5. Chandrasekhar S. (1992). The Mathematical Theory of Black Holes. Clarendon Press, Oxford

    Google Scholar 

  6. Misner C.W., Thorne K.S., Wheeler J.A. (1973). Gravitation. Freeman, New York

    Google Scholar 

  7. Epstein K.J. (1999). Gen. Relat. Grav. 31: 379

    Article  MATH  ADS  Google Scholar 

  8. Caldwell R.R., Kamionkowski M., Weinberg N.N. (2003). Phys. Rev. Lett. 91: 071301

    Article  ADS  Google Scholar 

  9. Hartle J.B. (2003). Gravity. Addison Wesley, San Francisco

    Google Scholar 

  10. Epstein K.J. (1995). Anal. Sci. Fict. Fact. CXV(14): 172

    Google Scholar 

  11. Tolman R.C. (1987). Relativity, Thermodynamics and Cosmology. Dover, New York

    Google Scholar 

  12. Cowen R. (2005). Sci. News (USA) 168(25): 390–392

    Google Scholar 

  13. Riess A.G., Turner M.S. (2004). Sci. Am. 290(2): 62

    Article  Google Scholar 

  14. Turner M.S., Riess A.G. (2002). Astro. Phys. J. 569: 18

    Article  ADS  Google Scholar 

  15. Guth A.H. (1997). The Inflationary Universe. Helix, Addison–Wesley, Reading

    Google Scholar 

  16. Epstein K.J. (2000). Discover Magazine (USA) 21(6): 14

    Google Scholar 

  17. Bell, J.S.: In: Bell, M., Gottfried, K., Veltman, M. (eds.) John S. Bell on the Foundations of Quantum Mechanics. World Scientific, Singapore (2001)

  18. Ciufolini I., Wheeler J.A. (1995). Gravitation and Inertia. Princeton University Press, Princeton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Epstein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Epstein, K.J. Hamiltonian approach to frame dragging. Gen Relativ Gravit 40, 1367–1378 (2008). https://doi.org/10.1007/s10714-007-0535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0535-y

Keywords

  • Drag velocity
  • Inflationary rip tide
  • Repulsive Kerr gravity
  • Gravitomagnetism
  • Equivalence principle