Skip to main content

On the history of the so-called Lense-Thirring effect

Abstract

Some historical documents, especially the Einstein–Besso manuscript from 1913, an extensive notebook by H. Thirring from 1917, and the correspondence between Thirring and Einstein in the year 1917 reveal that most of the merit for the so-called Lense-Thirring effect of general relativity belongs to Einstein. Besides telling this “central story” of the effect, we give a short “prehistory”, with contributions by E. Mach, B. and I. Friedlaender, and A. Föppl, followed by the later history of the problem of a correct centrifugal force inside a rotating mass shell, which was resolved only relatively recently.

This is a preview of subscription content, access via your institution.

References

  1. Thirring, H.: Phys. Zs. 19, 33 [English translation in Gen. Rel. Grav. 16 (1984), 712] (1918)

  2. Lanczos K. (1923). Zeits. Phys. 14: 204

    Article  Google Scholar 

  3. Bass L. and Pirani F.A.E. (1955). Phil. Mag. 46: 850

    MATH  MathSciNet  Google Scholar 

  4. Pfister H. and Braun K.H. (1985). Class. Quant. Grav. 2: 909

    Article  ADS  MathSciNet  Google Scholar 

  5. Ciufolini I. and Pavlis E.C. (2004). Nature 431: 958

    Article  ADS  Google Scholar 

  6. Pugh G.E. (1959). WSEG Research Memorandum 11. The Pentagon, Washington

    Google Scholar 

  7. Schiff L.I. (1960). Phys. Rev. Lett. 4: 215

    Article  ADS  Google Scholar 

  8. Schiff L.I. (1960). Proc. Nat. Acad. Sci. USA 46: 871

    MATH  Article  ADS  MathSciNet  Google Scholar 

  9. Ciufolini I. and Wheeler J.A. (1995). Gravitation and Inertia. Princeton University Press, New Jersey

    MATH  Google Scholar 

  10. Everitt, C.W.F., et al.: Gyros, clocks, interferometers, ...: testing relativistic gravity in space. Springer Lecture Notes 562, pp. 52–82 (2001)

  11. Barbour, J., Pfister, H. (eds.): Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Leipzig (1995)

  12. Mach, E.: Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Calve, Prag (1872)

  13. Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch dargestellt. Brockhaus, Leipzig (1883)

  14. Friedlaender, B., Friedlaender, I.: Absolute oder relative Bewegung. Simion, Berlin. (Partial translation, and comments in [11]) (1896)

  15. Föppl, A.: Sitzb. Bayer. Akad. Wiss. 34:5 (Summary in [11])

  16. Einstein, A.: Jahrb. Radioakt. Elektronik 4:411 (1907) (Chap. V, pp. 454–462)

  17. Einstein, A.: Ann. Phys. 38:355, 443 (1912)

    Google Scholar 

  18. Einstein A. (1912). Vierteljahrschr. gerichtl. Med. öffentl. Sanitätswesen 44: 37

    ADS  Google Scholar 

  19. Brans C.H. (1962). Phys. Rev. 125: 388

    Article  ADS  MathSciNet  Google Scholar 

  20. Howard, D., Stachel, J. (eds.): Einstein and the History of General Relativity. Birkhäuser, Leipzig (1989)

  21. Norton J. (1984). Hist. Stud. Phys. Sci. 14: 253

    Google Scholar 

  22. Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Teubner, Leipzig (1913)

  23. Klein, M.J., et al. (eds.): The Collected Papers of Albert Einstein, vol. 4. Princeton University Press, New Jersey (1995)

  24. Droste J. (1914). Kon. Akad. Wetenschapen Amsterdam Proc. Sec. Sci. 17: 998

    Google Scholar 

  25. Einstein A. (1913). Phys. Zs. 14: 1249

    Google Scholar 

  26. Lense, J., Thirring, H.: Phys. Zs. 19:156 (1918). (Translation in Gen. Rel. Grav. 16:727 (1984))

    Google Scholar 

  27. Thirring H. (1918). Phys. Zs. 19: 204

    Google Scholar 

  28. Schulmann, R., et al. (eds.): The Collected Papers of Albert Einstein, vol. 8 (Documents 361, 369, 401, and 405). Princeton University Press, New Jersey (1998)

  29. Thirring H. (1966). Almanach Österr. Akad. Wiss. 166: 361

    Google Scholar 

  30. Thirring, H.: Wirkung rotierender Massen. (Österr. Zentralbibl. Wien) (1917)

  31. Einstein, A.: Sitzb. Königl. Preuss. Akad. Wiss. 142 (1917)

  32. Thirring H. (1918). Vierteljahrb. Wiener Verein z. Förderung d. phys. und chem. Unterrichts 23: 17

    Google Scholar 

  33. Thirring, H.: Über die Relativität der Rotationsbewegung in der Einsteinschen Gravitationstheorie. Österr. Zentralbibl. Phys., Wien (1922)

  34. Lense J. (1918). Astron. Nachr. 206: 117

    Article  ADS  Google Scholar 

  35. Jaffé G. (1922). Phys. Zs. 23: 337

    Google Scholar 

  36. Zimmel, B., Kerber, G. (eds.): Hans Thirring. Ein Leben für Physik und Frieden. Böhlau, Wien (1992)

  37. Hönl H. and Maue A.W. (1956). Zs. Phys. 144: 152

    MATH  Article  Google Scholar 

  38. Soergel-Fabricius, C.: Zs. Phys. 159:541, 161:392 (1960)

    Google Scholar 

  39. Brill D. and Cohen J.M. (1966). Phys. Rev. 143: 1011

    Article  ADS  MathSciNet  Google Scholar 

  40. Hawking, S., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, London (1973)

  41. Pfister H. and Braun K.H. (1986). Class. Quant. Grav. 3: 335

    MATH  Article  ADS  MathSciNet  Google Scholar 

  42. de la Cruz V. and Israel W. (1968). Phys. Rev. 170: 1187

    Article  ADS  Google Scholar 

  43. Pfister H. (1989). Class. Quant. Grav. 6: 487

    Article  ADS  MathSciNet  Google Scholar 

  44. Klein C. (1993). Class. Quant. Grav. 10: 1619

    Article  ADS  Google Scholar 

  45. Bičák J., Lynden-Bell D. and Katz J. (2004). Phys. Rev. D 69: 064011

    Article  ADS  Google Scholar 

  46. Schmid C. (2006). Phys. Rev. D 74: 044031

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Pfister.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pfister, H. On the history of the so-called Lense-Thirring effect. Gen Relativ Gravit 39, 1735–1748 (2007). https://doi.org/10.1007/s10714-007-0521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0521-4

Keywords

  • Lense-Thirring effect
  • Dragging
  • Coriolis force
  • Centrifugal force
  • Mach’s principle