Skip to main content
Log in

On the vacuum status in Weyl–Dirac theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A hydrodynamic model of the Weyl–Dirac theory in the non-relativistic approach is established. Any microparticle is permanently interacting with the ‘subquantum level’ through the quantum potential, which depends only on the imaginary part of a complex speed. The complex speed fields indicate a possible connection between the Weyl–Dirac theory and Scale Relativity Theory. In such conjecture, some properties of the vacuum states result: the vacuum states behave as a superconducting state, they act as an energy accumulator etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl H. (1919). Ann. Phys. (Lpz.) 59: 101–105

    Article  ADS  Google Scholar 

  2. Dirac P.A.M. (1973). Proc. R. Soc. Lond. A 333: 403–409

    Article  ADS  MathSciNet  Google Scholar 

  3. Israelit M. (1999). The Weyl–Dirac Theory and Our Universe. Nova, New York

    Google Scholar 

  4. Gregorash D. and Papini G. (1981). Nuovo Cimento B 63: 487–509

    MathSciNet  ADS  Google Scholar 

  5. Wood W.R. and Papini G. (1993). J. Found. Phys. Lett. 6: 207–223

    Article  MathSciNet  Google Scholar 

  6. Wood W.R. and Papini G. (1992). Phys. Rev. D 45: 3617–3627

    Article  ADS  MathSciNet  Google Scholar 

  7. Agop M. and Nica P. (1999). Class. Quantum Grav. 16: 3367–3380

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Agop M. and Nica P. (2000). Class. Quantum Grav. 17: 3627–3644

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Agop M., Ioannou P.D. and Buzea C. (2001). Class. Quantum Grav. 18: 4743–4762

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Bohm D. (1951). Phys. Rev. 85: 166–179

    Article  ADS  MathSciNet  Google Scholar 

  11. Papini G. (1990). Berry’s phase and particle interferometry in weak gravitational fields. In: Aundretsch, J. (eds) Quantum Mechanics in Curved Space-Time, pp. Plenum Press, New York

    Google Scholar 

  12. Cai Y.Q. and Papini G. (1989). Class Quant. Grav. 6: 607

    MathSciNet  Google Scholar 

  13. Anandan J. (1977). Phys. Rev. D 15: 448

    Article  ADS  Google Scholar 

  14. Papini G. (1970). Nuovo Cim. 68: 1

    ADS  Google Scholar 

  15. Wald R.M. (1984). General Relativity. University of Chicago Press, Chicago

    MATH  Google Scholar 

  16. Weinberg S. (1972). Gravitation and Cosmology. Wiley, New York

    Google Scholar 

  17. Synge J.L. (1964). Relativity: the General Theory. North-Holland, Amsterdam

    Google Scholar 

  18. Adler R., Bazin M. and Schiffer M. (1965). Introduction to General Relativity. McGraw-Hill, New York

    MATH  Google Scholar 

  19. ‘t Hooft G. (1981). Nucl. Phys. B 315: 527–577

    Google Scholar 

  20. Nottale L. and Schneider J. (1984). J. Math. Phys. 25: 1296

    Article  ADS  MathSciNet  Google Scholar 

  21. Ord G. (1983). J. Phys. Math. Gen. 16: 1869

    Article  ADS  MathSciNet  Google Scholar 

  22. Nottale L. (1989). Int. J. Mod. Phys. 4: 5047

    Article  ADS  MathSciNet  Google Scholar 

  23. Nottale L. (1992). Fractal Space-Time and Microphysics, Towards a Theory of Scale Relativity. World Scientific, Singapore

    Google Scholar 

  24. Nottale L. (1996). Chaos Solitons Fractals 7: 877

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Madelbrot B. (1982). The Fractal Geometry of Nature. Freeman, San Francisco

    Google Scholar 

  26. Bransden B.H. and Joachain C.J. (1994). Introduction to Quantum Mechanics. Longman Scientific and Technical, Essex

    Google Scholar 

  27. Titeica S. (1984). Quantum Mechanics. Romanian Academy Press, Bucharest

    Google Scholar 

  28. Agop M., Nica P., Ioannou P.D., Olga Malandraki and Gavanas-Pahomi I. (2007). Chaos Solitons Fractals 34: 1704

    Article  Google Scholar 

  29. Rosen N. (1982). Found. Phys. 12: 213

    Article  ADS  MathSciNet  Google Scholar 

  30. Israelit M. (1997). Gen. Rel. Grav. 29: 11

    Google Scholar 

  31. Barrow J.D. and Burman R.R. (1984). Nat (Lond) 307: 14–15

    Article  ADS  Google Scholar 

  32. Chaichian M. and Nelipa N.F. (1984). Introduction to Gauge Field Theories. Springer, Berlin

    Google Scholar 

  33. Poole C.P., Farach H.A. and Geswich R.J. (1995). Superconductivity. Academic, San Diego

    Google Scholar 

  34. Bowman F. (1953). Introduction to Elliptic Functions with Applications. English University Press, London

    MATH  Google Scholar 

  35. Toda M. (1988). Theory of Nonlinear Lattices. Springer, Berlin

    Google Scholar 

  36. Ciubotariu C. and Agop M. (1996). Gen. Rel. Grav. 28: 405–412

    Article  MATH  ADS  Google Scholar 

  37. Kroger H. (2000). Phys Rep 323: 81–181

    Article  ADS  MathSciNet  Google Scholar 

  38. Goldfain E. (2006). Chaos Solitons Fractals 30: 324–331

    Article  Google Scholar 

  39. Hawking S. and Penrose R. (1996). The Nature of Space and Time. Princeton University Press, Princeton

    MATH  Google Scholar 

  40. Penrose R. (2004). The Road to Reality: a Complete Guide to the Laws of the Universe. Jonathan Cape, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agop, M., Nica, P. & Gîrţu, M. On the vacuum status in Weyl–Dirac theory. Gen Relativ Gravit 40, 35–55 (2008). https://doi.org/10.1007/s10714-007-0519-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0519-y

Keywords

Navigation