Skip to main content
Log in

High-speed cylindrical collapse of two perfect fluids

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by c s , d s . It is shown that the high-speed approximation scheme breaks down by non-zero pressures p 1, p 2 when c s , d s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainty on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa (Prog Theor Phys 113:73, 2005) for the perfect fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakao K. and Morisawa Y. (2005). Prog. Theor. Phys. 113: 73

    Article  MATH  ADS  Google Scholar 

  2. Einstein, A.: Sitzber Preuss. Akad. Wiss. 688 (1916)

  3. Einstein, A.: Sitzber Preuss. Akad. Wiss. 154 (1918)

  4. Eddington A.S. (1923). Proc. R. Soc. Lond. A102: 268

    ADS  Google Scholar 

  5. Penrose R. (1965). Phys. Rev. Lett. 14: 57

    Article  MATH  ADS  Google Scholar 

  6. Hawking S.W. (1967). Proc. R. Soc. Lond. A300: 187

    ADS  Google Scholar 

  7. Hawking S.W. and Penrose R. (1970). Proc. R. Soc. Lond. A314: 529

    ADS  Google Scholar 

  8. Penrose R. (1969). Riv. Nuovo Cimento 1: 252

    Google Scholar 

  9. Nakao K. and Morisawa Y. (2005). Phys. Rev. D71: 124007

    ADS  Google Scholar 

  10. Nakamura T., Shibata M. and Nakao K. (1993). Prog. Theor. Phys. 89: 821

    Article  ADS  Google Scholar 

  11. Joshi P.S. (1993). Global Aspects in Gravitation and Cosmology. Oxford University Press, Oxford

    MATH  Google Scholar 

  12. Iguchi H., Harada T. and Nakao K. (1998). Phys. Rev. D57: 7262

    ADS  Google Scholar 

  13. Iguchi H., Harada T. and Nakao K. (1999). Prog. Theor. Phys. 101: 1235

    Article  ADS  Google Scholar 

  14. Iguchi H., Harada T. and Nakao K. (2000). Prog. Theor. Phys. 103: 53

    Article  ADS  Google Scholar 

  15. Nakao K., Iguchi H. and Harada T. (2001). Phys. Rev. D63: 084003

    ADS  Google Scholar 

  16. Harada T., Iguchi H. and Nakao K. (2002). Prog. Theor. Phys. 107: 449

    Article  MATH  ADS  Google Scholar 

  17. Thorne K.S.: In: Klauder, J. (ed.) Magic Without Magic; John Archibald Wheeler, p. 231. Freeman, San Francisco (1972)

  18. Hayward S.A. (2000). Class. Quantum Grav. 17: 1749

    Article  MATH  ADS  Google Scholar 

  19. Morgan T.A. (1973). Gen. Relat. Grav. 4: 273

    Article  ADS  Google Scholar 

  20. Apostolates T. and Thorne K.S. (1992). Phys. Rev. D46: 2435

    ADS  Google Scholar 

  21. Latelier P.S. and Wang A. (1994). Phys. Rev. D49: 5105

    ADS  Google Scholar 

  22. Nolan B.C. (2002). Phys. Rev. D65: 104006

    ADS  Google Scholar 

  23. Pereira P.R.C.T. and Wang A. (2000). Phys. Rev. D62: 124001

    ADS  Google Scholar 

  24. Nolan B.C. and Nolan L.V. (2004). Class. Quantum Grav. 21: 3693

    Article  MATH  ADS  Google Scholar 

  25. Piran T. (1978). Phys. Rev. Lett. 41: 1085

    Article  ADS  Google Scholar 

  26. Echeverria F. (1993). Phys. Rev. D47: 2271

    ADS  Google Scholar 

  27. Chiba T. (1996). Prog. Theor. Phys. 95: 321

    Article  ADS  Google Scholar 

  28. Nakao K. and Morisawa Y. (2004). Class. Quant. Grav. 21: 2101

    Article  MATH  ADS  Google Scholar 

  29. Thorne K.S. (1965). Phys. Rev. 138: B251

    Article  ADS  Google Scholar 

  30. Hall G.S. and Negm D.A. (1986). Int. J. Theor. Phys. 25: 405

    Article  MATH  Google Scholar 

  31. Letelier P.S. (1980). Phys. Rev. D22: 807

    ADS  Google Scholar 

  32. Sharif M. and Aziz S. (2007). Class. Quantum Grav. 24: 605

    Article  MATH  ADS  Google Scholar 

  33. Letelier P.S. (1991). Phys. Rev. Lett. 66: 268

    Article  ADS  Google Scholar 

  34. Letelier P.S. (1992). Class. Quantum Grav. 9: 1707

    Article  MATH  ADS  Google Scholar 

  35. Letelier P.S. (1993). Phys. Rev. D47: 1709

    ADS  Google Scholar 

  36. Ellis G.F.R. and Schmidt B.G. (1977). Gen. Relat. Grav. 8: 915

    Article  MATH  ADS  Google Scholar 

  37. Wald R.M. (1984). General Relativity. The University of Chicago Press, Chicago

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, M., Ahmad, Z. High-speed cylindrical collapse of two perfect fluids. Gen Relativ Gravit 39, 1331–1344 (2007). https://doi.org/10.1007/s10714-007-0440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0440-4

Keywords

Navigation