Skip to main content
Log in

Regular black holes and black universes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We give a comparative description of different types of regular static, spherically symmetric black holes (BHs) and discuss in more detail their particular type, which we suggest to call black universes. The latter have a Schwarzschild-like causal structure, but inside the horizon there is an expanding Kantowski–Sachs universe and a de Sitter infinity instead of a singularity. Thus a hypothetic BH explorer gets a chance to survive. Solutions of this kind are naturally obtained if one considers static, spherically symmetric distributions of various (but not all) kinds of phantom matter whose existence is favoured by cosmological observations. It also looks possible that our Universe has originated from phantom-dominated collapse in another universe and underwent isotropization after crossing the horizon. An explicit example of a black-universe solution with positive Schwarzschild mass is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bronnikov K.A. and Fabris J.C. (2006). Regular phantom black holes. Phys. Rev. Lett. 96: 251101 gr-qc/0511109

    Article  ADS  MathSciNet  Google Scholar 

  2. Upadhye A., Ishak M. and Steinhardt P.J. (2005). Phys. Rev. D72: 063501

    ADS  Google Scholar 

  3. Wang Y. and Tegmark M. (2004). Phys. Rev. Lett. 92: 241302

    Article  ADS  Google Scholar 

  4. Seljak U. (2005). Phys. Rev. D71: 103515

    ADS  Google Scholar 

  5. Hannestad S. and Mortsell E. (2004). JCAP 0409: 001

    ADS  Google Scholar 

  6. Alam U., Sahni V., Saini T.D. and Starobinsky A.A. (2004). Mon. Not. Astron. R. Soc. 354: 275

    Article  ADS  Google Scholar 

  7. Allen S.W. (2004). Mon. Not. R. Astron. Soc. 353: 457

    Article  ADS  Google Scholar 

  8. Sen A. (2002). JHEP 0204: 048

    Article  ADS  Google Scholar 

  9. Sen A. (2002). JHEP 0207: 065

    Article  ADS  Google Scholar 

  10. Nilles H.P. (1984). Phys. Rep. 110: 1

    Article  ADS  Google Scholar 

  11. Khviengia N., Khviengia Z., Lü H. and Pope C.N. (1998). Class. Quant. Grav. 15: 759

    Article  MATH  ADS  Google Scholar 

  12. Nojiri S. and Odintsov S.D. (2003). Phys. Lett. B562: 147

    ADS  MathSciNet  Google Scholar 

  13. Carroll S.M., Hoffman M. and Trodden M. (2003). Phys. Rev. D68: 023509

    ADS  Google Scholar 

  14. Armendáriz-Picon C. (2002). Phys. Rev. D65: 104010

    ADS  Google Scholar 

  15. Campanelli M. and Lousto C.O. (1993). Int. J. Mod. Phys. D2: 451

    ADS  MathSciNet  Google Scholar 

  16. Bronnikov K.A., Clément G., Constantindis C.P. and Fabris J.C. (1998). Grav. Cosmol. 4: 128

    MATH  Google Scholar 

  17. Bronnikov K.A., Clément G., Constantindis C.P. and Fabris J.C. (1998). Phys. Lett. A 243: 121

    Article  ADS  MathSciNet  Google Scholar 

  18. Wald R.M. (1984). General Relativity. The University of Chicago Press, Chicago

    MATH  Google Scholar 

  19. Bronnikov K.A., Constantinidis C.P., Evangelista R.L. and Fabris J.C. (1999). Int. J. Mod. Phys. D8: 481

    ADS  MathSciNet  Google Scholar 

  20. Casadio R., Fabbri A. and Mazzacurati L. (2002). Phys. Rev. D65: 084040

    ADS  MathSciNet  Google Scholar 

  21. Bronnikov K.A., Dehnen H. and Melnikov V.N. (2003). Phys. Rev. D68: 024025

    ADS  MathSciNet  Google Scholar 

  22. Bardeen, J.M.: Non-singular general-relativistic gravitational collapse. In: Proceedings of International Conference GR5, Tbilisi, p. 174 (1968)

  23. Dymnikova I. (1992). Gen. Rel. Gravit. 24: 235

    Article  MathSciNet  Google Scholar 

  24. Ayon-Beato E. and Garcia A. (1998). Phys. Rev. Lett. 80: 5056

    Article  ADS  Google Scholar 

  25. Bronnikov K.A. (2001). Phys. Rev. D 63: 044005 gr-qc/0006014

    Article  ADS  MathSciNet  Google Scholar 

  26. Bronnikov K.A., Dobosz A. and Dymnikova I.G. (2003). Class. Quant. Grav. 20: 3797

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Burinskii A. and Hildebrandt S.R. (2002). Phys. Rev. D65: 104017

    ADS  MathSciNet  Google Scholar 

  28. Burinskii A. and Hildebrandt S.R. (2003). Grav. Cosmol. 9: 20

    MATH  MathSciNet  Google Scholar 

  29. Burinskii A. and Hildebrandt S.R. (2003). Czech. J. Phys. 53: B283

    Article  Google Scholar 

  30. Berej W., Matyjasek J., Tryniecki D. and Woronowicz M. (2006). Regular black holes in quadratic gravity. Gen. Rel. Grav. 38: 885–906

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Hayward and S.A. (2006). Phys. Rev. Lett. 96: 031103

    Article  ADS  Google Scholar 

  32. Shankaranarayanan S. and Dadhich N. (2004). Int. J. Mod. Phys. D 13: 1095 gr-qc/0306111

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Bronnikov, K.A., Chernakova, M.S., Fabris, J.C., Pinto-Neto N., Rodrigues M.E.: Cold black holes and conformal continuations. Int. J. Mod. Phys. D (to appear)

  34. Shiromizu T., Maeda K. and Sasaki M. (2000). Phys. Rev. D62: 024012

    ADS  MathSciNet  Google Scholar 

  35. Abdalla E., Cuadros-Melgar B., Pavan A.B. and Molina C. (2006). Stability and thermodynamics of brane black holes. Nucl. Phys. B752: 40–59

    Article  ADS  MathSciNet  Google Scholar 

  36. Casadio R. and Mazzacurati L. (2003). Mod. Phys. Lett. A18: 651

    ADS  MathSciNet  Google Scholar 

  37. Copeland E.J., Sami M. and Tsujikawa S. (2006). Dynamics of dark energy. Int. J. Mod. Phys. D15: 1753–1936

    ADS  MathSciNet  Google Scholar 

  38. Sahni V. and Starobinsky A. (2006). Reconstructing dark energy. Int. J. Mod. Phys. D15: 2105–2132

    ADS  Google Scholar 

  39. Bronnikov K.A. (2001). Phys. Rev. D64: 064013

    ADS  MathSciNet  Google Scholar 

  40. Bronnikov K.A. and Shikin G.N. (2002). Grav. Cosmol. 8: 107–116 gr-qc/0109027

    MATH  MathSciNet  Google Scholar 

  41. Chan K.C.K., Horne J.H. and Mann R.B. (1995). Nucl. Phys. B447: 441

    Article  ADS  MathSciNet  Google Scholar 

  42. Nucamendi U. and Salgado M. (2003). Phys. Rev. D68: 044026

    ADS  Google Scholar 

  43. Bechmann O. and Lechtenfeld O. (1995). Class. Quant. Grav. 12: 1473

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Dennhardt H. and Lechtenfeld O. (1998). Int. J. Mod. Phys. A13: 741

    ADS  MathSciNet  Google Scholar 

  45. Ellis H.G. (1973). J. Math. Phys. 14: 104

    Article  Google Scholar 

  46. Faraoni V. (2005). Class. Quant. Grav. 22: 3235

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Wagoner R. (1970). Phys. Rev. D1: 3209

    ADS  Google Scholar 

  48. Aguiar P., Crawford P.: Dust-filled axially symmetric universes with cosmological constant. gr-qc/ 0009056

  49. Tseytlin A.A. and Vafa C. (1992). Nucl. Phys. B372: 443

    Article  ADS  MathSciNet  Google Scholar 

  50. Easson D.A. and Brandenberger R.H. (2001). JHEP 0106: 024 hep-th/0103019

    Article  ADS  MathSciNet  Google Scholar 

  51. Dymnikova I.G., Dobozh A., Filchenkov M.L. and Gromov A. (2001). Phys. Lett. B506: 351

    ADS  Google Scholar 

  52. Hsu, S.D.H.: Spacetime topology change and black hole information. hep-th/0608175

  53. Bogojevic A. and Stojkovic D. (2000). Phys. Rev. D61: 084011 gr-qc/9804070

    ADS  MathSciNet  Google Scholar 

  54. Easson D.A. (2003). JHEP 0302: 037 hep-th/0210016

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Bronnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, K.A., Dehnen, H. & Melnikov, V.N. Regular black holes and black universes. Gen Relativ Gravit 39, 973–987 (2007). https://doi.org/10.1007/s10714-007-0430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0430-6

Keywords

Navigation