Skip to main content
Log in

Dark energy interacting with neutrinos and dark matter: a phenomenological theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A model for a flat homogeneous and isotropic Universe composed of dark energy, dark matter, neutrinos, radiation and baryons is analyzed. The fields of dark matter and neutrinos are supposed to interact with the dark energy. The dark energy is considered to obey either the van der Waals or the Chaplygin equations of state. The ratio between the pressure and the energy density of the neutrinos varies with the red-shift simulating massive and non-relativistic neutrinos at small red-shifts and non-massive relativistic neutrinos at high red-shifts. The model can reproduce the expected red-shift behaviors of the deceleration parameter and of the density parameters of each constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perlmutter S. (1999). Measurements of Ω and from 42 high-redshift supernovae. Astrophys. J. 517: 565

    Article  ADS  Google Scholar 

  2. Riess A.G. (2001). The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 560: 49

    Article  ADS  Google Scholar 

  3. Turner M.S. and Riess A.G. (2002). Do type Ia supernovae provide direct evidence for past deceleration of the universe?. Astrophys. J. 569: 18

    Article  ADS  Google Scholar 

  4. Tonry J. (2003). Cosmological results from high-z supernovae. Astrophys. J. 594: 1

    Article  ADS  Google Scholar 

  5. Bennett C.L. (2003). WMAP first-year results. Astrophys. J. Suppl. 148: 1

    Article  ADS  Google Scholar 

  6. Peiris H.V. (2003). WMAP: implications for inflation. Astrophys. J. Suppl. 148: 213

    Article  ADS  Google Scholar 

  7. Netterfield C. (2002). A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571: 604

    Article  ADS  Google Scholar 

  8. Halverson N. (2002). Degree angular scale interferometer first results: a measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568: 38

    Article  ADS  Google Scholar 

  9. Spergel D.N. (2003). WMAP first-year results: parameters. Astrophys. J. Suppl. 148: 175

    Article  ADS  Google Scholar 

  10. Carroll, S.M.: Why is the universe accelerating? astro-ph/0310342

  11. Schmidt B. (1998). The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 507: 46

    Article  ADS  Google Scholar 

  12. Efstathiou, G., Bridle, S.L., Lasenby, A.N., Hobson, M.P., Ellis, R.S.: Constraints on Ωλ and Ω m from distant type 1a supernovae and cosmic microwave background anisotropies. astro-ph/9812226

  13. Riess A.G. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116: 1009

    Article  ADS  Google Scholar 

  14. Huterer D. and Turner M.S. (1999). Prospects for probing the dark energy via supernova distance measurements. Phys. Rev. D 60: 081301

    Article  ADS  Google Scholar 

  15. Persic M., Salucci P. and Stel F. (1996). The universal rotation curve of spiral galaxies: I. the dark matter connection. Mon. Not. R. Astron. Soc. 281: 27

    ADS  Google Scholar 

  16. Bi X.-J., Feng B., Li H. and Zhang X. (2005). Cosmological evolution of interacting dark energy models with mass varying neutrinos. Phys. Rev. D 72: 123523

    Article  ADS  Google Scholar 

  17. Brookfield A.W., Mota D.F., Tocchini-Valentini D. and Bruck C. (2006). Cosmology with massive neutrinos coupled to dark energy. Phys. Rev. Lett. 96: 061301

    Article  ADS  Google Scholar 

  18. Brookfield A.W., Mota D.F., Tocchini-Valentini D. and Bruck C. (2006). Cosmology of mass-varying neutrinos driven by quintessence: theory and observations. Phys. Rev. D 73: 083515

    Article  ADS  Google Scholar 

  19. Wetterich C. (1988). Cosmologies with variable Newton’s “constant”. Nucl. Phys. B 302: 645

    Article  ADS  Google Scholar 

  20. Wetterich C. (1995). An asymptotically vanishing time-dependent cosmological “constant”. Astron. Astrophys. 301: 321

    ADS  Google Scholar 

  21. Amendola L. (2000). Coupled quintessence. Phys. Rev. D 62: 043511

    Article  ADS  Google Scholar 

  22. Binder J.B. and Kremer G.M. (2005). A model for a non-minimally coupled scalar field interacting with dark matter. Braz. J. Phys. 35: 1038

    Article  Google Scholar 

  23. Anderson, G.W., Carroll, S.M.: Dark matter with time-dependent mass. astro-ph/9711288 (1997)

  24. Binder J.B. and Kremer G.M. (2006). Model for a universe described by a non-minimally coupled scalar field and interacting dark matter. Gen. Relativ. Gravit. 38: 857

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Capozziello S., De Martino S. and Falanga M. (2002). Van der Waals quintessence. Phys. Lett. A 299: 494

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Capozziello S., Cardone V.F., Carloni S., Falanga M., Troisi A., Bruni M. and Martino S. (2005). Constraining Van der Waals quintessence with observations. J. Cosmol. Astropart. Phys. 04: 005

    Article  ADS  Google Scholar 

  27. Cardone V.F., Tortora C., Troisi A. and Capozziello S. (2006). Beyond the perfect fluid hypothesis for the dark energy equation of state. Phys. Rev. D 73: 043508

    Article  ADS  Google Scholar 

  28. Kremer G.M. (2003). Cosmological models described by a mixture of van der Waals fluid and dark energy. Phys. Rev. D 68: 123507

    Article  ADS  Google Scholar 

  29. Kremer G.M. (2004). Brane cosmology with a van der Waals equation of state. Gen. Relativ. Gravit. 36: 1423

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Kamenshchik A.Yu., Moschella U. and Pasquier V. (2001). An alternative to quintessence. Phys. Lett. B 511: 265

    Article  MATH  ADS  Google Scholar 

  31. Fabris J.C., Gonçalves S.V.B. and de Souza P.E. (2002). Density perturbations in a universe dominated by the Chaplygin gas. Gen. Relativ. Gravit. 34: 53

    Article  MATH  Google Scholar 

  32. Bento M.C., Bertolami O. and Sen A.A. (2002). Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66: 043507

    Article  ADS  Google Scholar 

  33. Kremer G.M. (2003). Irreversible processes in a universe modelled as a mixture of a Chaplygin gas and radiation. Gen. Relativ. Gravit. 35: 1459

    Article  MATH  ADS  Google Scholar 

  34. Cercignani C. and Kremer G.M. (2002). The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser, Basel

    MATH  Google Scholar 

  35. Fukugita M. and Peebles P.J.E. (2004). The cosmic energy inventory. Astrophys. J. 616: 643

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kremer.

Additional information

Dedicated to Professor Ingo Müller on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremer, G.M. Dark energy interacting with neutrinos and dark matter: a phenomenological theory. Gen Relativ Gravit 39, 965–972 (2007). https://doi.org/10.1007/s10714-007-0428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0428-0

Keywords

Navigation