Skip to main content
Log in

On the relation of Thomas rotation and angular velocity of reference frames

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the extensive literature dealing with the relativistic phenomenon of Thomas rotation several methods have been developed for calculating the Thomas rotation angle of a gyroscope along a circular world line. One of the most appealing concepts, introduced in Rindler and Perlick (Gen Rel Grav 22:1067, 1990), is to consider a rotating reference frame co-moving with the gyroscope, and relate the precession of the gyroscope to the angular velocity of the reference frame. A recent paper (Herrera and di Prisco in Found Phys Lett 15:373, 2002), however, applies this principle to three different co-moving rotating reference frames and arrives at three different Thomas rotation angles. The reason for this apparent paradox is that the principle of Rindler and Perlick (Gen Rel Grav 22:1067, 1990) is used for a situation to which it does not apply. In this paper we rigorously examine the theoretical background and limitations of applicability of the principle of Rindler and Perlick (Gen Rel Grav 22:1067, 1990). Along the way we also establish some general properties of rotating reference frames, which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costella J.P., McKellar B.H.J., Rawlinson A.A. and Stephenson G.J. (2001). Am. J. Phys. 69: 837

    Article  ADS  Google Scholar 

  2. Ehrenfest P. (1909). Phys. Z. 10: 918

    Google Scholar 

  3. Fisher G.P. (1972). Am. J. Phys. 40: 1772

    Article  ADS  Google Scholar 

  4. Herrera L. (2000). Nuovo Cim. B 115: 37

    MathSciNet  Google Scholar 

  5. Herrera L. and di Prisco A. (2002). Found. Phys. Lett. 15: 373

    Article  MathSciNet  Google Scholar 

  6. Kennedy W.L. (2002). Eur. J. Phys. 23: 235

    Article  MATH  Google Scholar 

  7. Klauber R.D. (1998). Found. Phys. Lett. 11(5): 405

    Article  MathSciNet  Google Scholar 

  8. Klauber R.D. (1999). Am. J. Phys. 67(2): 158

    Article  ADS  Google Scholar 

  9. Matolcsi, T.: A concept of mathematical physics, models for spacetime. Akadémiai Kiadó, Budapest (1984)

  10. Matolcsi, T.: Spacetime without Reference Frames. Akadémiai Kiadó, Budapest (1993)

  11. Matolcsi T. (1998). Found. Phys. 28(11): 1685

    Article  MathSciNet  Google Scholar 

  12. Matolcsi, T., Matolcsi, M.: Int. J. Theory Phys. 44, no.1, 63 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Matolcsi, T., Matolcsi, M.: Preprint, http://www.math.bme.hu/matolcsi. GPS revisited: the relation of proper time and coordinate time (2006)

  14. Møller, M.C.: The Theory of Relativity, 2nd edn. Clarendon Press, Oxford (1972)

    Google Scholar 

  15. Philpott R.J. (1996). Am. J. Phys. 64: 552

    Article  ADS  Google Scholar 

  16. Rebilas K. (2002). Am. J. Phys. 70: 1163

    Article  ADS  Google Scholar 

  17. Rindler W. and Perlick V. (1990). Gen. Rel. Grav. 22: 1067

    Article  MATH  MathSciNet  Google Scholar 

  18. Rizzi G. and Ruggiero M.L. (2002). Found. Phys. 32(10): 1525

    Article  MathSciNet  Google Scholar 

  19. Rodrigues W.A. and Sharif M. (2001). Found. Phys. 31: 1767

    Article  MathSciNet  Google Scholar 

  20. Sachs, R.K., Wu, H.: General relativity for mathematicians. Springer, New York (1977)

    MATH  Google Scholar 

  21. Selleri F. (1997). Found. Phys. Lett. 10: 73

    MathSciNet  Google Scholar 

  22. Takeno H. (1952). Prog. Theor. Phys. 7: 367

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Tartaglia A. (1999). Found. Phys. Lett. 12: 17

    Article  MathSciNet  Google Scholar 

  24. Thomas L.H. (1927). Phil. Mag. 3: 1

    Google Scholar 

  25. Trocheris M. (1949). Phil. Mag. 40: 1143

    MATH  MathSciNet  Google Scholar 

  26. Ungar A.A. (1989). Found. Phys. 19: 1385

    Article  MathSciNet  Google Scholar 

  27. Wilkins D.C. (1970). Ann. Phys. NY. 61: 277

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máté Matolcsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matolcsi, T., Matolcsi, M. & Tasnádi, T. On the relation of Thomas rotation and angular velocity of reference frames. Gen Relativ Gravit 39, 413–426 (2007). https://doi.org/10.1007/s10714-007-0399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0399-1

Keywords

Navigation