Skip to main content
Log in

On the expansion of a quantum field theory around a topological sector

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The idea of treating quantum general relativistic theories in a perturbative expansion around a topological theory has recently received attention, in the quantum gravity literature. We investigate the viability of this idea by applying it to conventional Yang–Mills theory on flat spacetime. This theory admits indeed a formulation as a modified topological theory, like general relativity. We find that the expansion around the topological theory coincides with the usual expansion around the free abelian theory, though the equivalence is non-trivial. In this context, the technique appears therefore to be viable, but not to bring particularly new insights. On the other hand, we point out that the relation of this expansion with the actual quantum BF theory is far from being transparent. Some implications for gravity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goroff M.H. and Sagnotti A. (1986). The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266: 709

    Article  ADS  Google Scholar 

  2. Kiefer C. (2004). Quantum Gravity. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  3. Polchinski J. (1998). String Theory. Cambridge University Press, Cambridge

    Google Scholar 

  4. Rovelli C. (2004). Quantum Gravity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Freidel, L., Starodubtsev, A.: Quantum gravity in terms of topological observables. arXiv:hep-th/0501191

  6. Witten E. (1988). (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311: 46

    Article  ADS  MathSciNet  Google Scholar 

  7. Rovelli C. (1993). The basis of the Ponzano–Regge–Turaev–Viro–Ooguri quantum gravity model in the loop representation basis. Phys. Rev. D 48: 2702

    Article  ADS  MathSciNet  Google Scholar 

  8. Halpern M.B. (1977). Field strength formulation of quantum chromodynamics. Phys. Rev. D 16: 1798

    Article  ADS  Google Scholar 

  9. Schaden M., Reinhardt H., Amundsen P.A. and Lavelle M.J. (1990). An effective action for Yang–Mills field strengths. Nucl. Phys. B 339: 595

    Article  ADS  Google Scholar 

  10. Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini A. and Zeni M. (1998). Four-dimensional Yang–Mills theory as a deformation of topological BF theory. Commun. Math. Phys. 197: 571 [arXiv:hep-th/9705123]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Birmingham D., Blau M., Rakowski M. and Thompson G. (1991). Topological field theory. Phys. Rept. 209: 129

    Article  ADS  MathSciNet  Google Scholar 

  12. Plebanski J.F. (1977). On the separation between Einsteinien substructure. J. Math. Phys. 12: 2511

    Article  ADS  MathSciNet  Google Scholar 

  13. Capovilla R., Jacobson T., Dell J. and Mason L. (1991). Selfdual two forms and gravity class. Quant. Grav. 8: 41

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. De Pietri R. and Freidel L. (1999). so(4) Plebanski action and relativistic spin foam model. Class. Quant. Grav. 16: 2187 [arXiv:gr-qc/9804071]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Reisenberger, M.P.: Classical Euclidean general relativity from ‘left-handed area = right-handed area’. arXiv:gr-qc/9804061

  16. Barrett J.W. and Crane L. (1998). Relativistic spin networks and quantum gravity. J. Math. Phys. 39: 3296 [arXiv:gr-qc/9709028]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Perez A. (2002). Spin foam quantization of SO(4) Plebanski’s action. Adv. Theor. Math. Phys. 5: 947 [Erratum-ibid. 6 (2003) 593] [arXiv:gr-qc/0203058]

    Google Scholar 

  18. MacDowell S.W. and Mansouri F. (1977). Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38: 739 [Erratum-ibid. 38 (1977) 1376]

    Article  ADS  MathSciNet  Google Scholar 

  19. Smolin, L., Starodubtsev, A.: General relativity with a topological phase: An action principle. arXiv:hep-th/0311163

  20. Mattei F., Rovelli C., Speziale S. and Testa M. (2006). From 3-geometry transition amplitudes to graviton states. Nucl. Phys. B 739: 234 [arXiv:gr-qc/0508007]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Rovelli C. and Smolin L. (1990). Loop space representation of quantum general relativity. Nucl. Phys. B 331: 80

    Article  ADS  MathSciNet  Google Scholar 

  22. Rovelli C. and Smolin L. (1995). Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442: 593

    Article  ADS  MathSciNet  Google Scholar 

  23. Conrady F., Doplicher L., Oeckl R., Rovelli C. and Testa M. (2004). Minkowski vacuum in background independent quantum gravity. Phys. Rev. D 69: 064019 [arXiv:gr-qc/0307118]

    Article  ADS  MathSciNet  Google Scholar 

  24. Oeckl R. (2003). A ‘general boundary’ formulation for quantum mechanics and quantum gravity. Phys. Lett. B [arXiv:hep-th/0306025]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Modesto L. and Rovelli C. (2005). Particle scattering in loop quantum gravity. Phys. Rev. Lett. 95: 191301 [arXiv:gr-qc/0502036]

    Article  ADS  MathSciNet  Google Scholar 

  26. Rovelli C. (2006). Graviton propagator from background-independent quantum gravity. Phys. Rev. Lett. 97: 151301 [arXiv:gr-qc/0508124]

    Article  ADS  MathSciNet  Google Scholar 

  27. Bianchi E., Modesto L., Rovelli C. and Speziale S. (2006). Graviton propagator in loop quantum gravity. Class. Quant. Grav. 23: 6989 [arXiv:gr-qc/0604044]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Speziale S. (2006). Towards the graviton from spinfoams: The 3D toy model. JHEP 05: 039 [arXiv:gr-qc/0512102]

    Article  MathSciNet  Google Scholar 

  29. Livine, E., Speziale, S., Willis, J.: Towards the graviton from spinfoams: higher order corrections in the 3d toy model. Phys. Rev. D [arXiv:gr-qc/0605123] (to appear)

  30. Livine, E.R., Speziale, S.: Group integral techniques for the spinfoam graviton propagator. JHEP [arXiv:gr-qc/0608131] (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Speziale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rovelli, C., Speziale, S. On the expansion of a quantum field theory around a topological sector. Gen Relativ Gravit 39, 167–178 (2007). https://doi.org/10.1007/s10714-006-0378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-006-0378-y

Keywords

Navigation