Skip to main content
Log in

Cosmological dynamics in tomographic probability representation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The probability representation for quantum states of the universe in which the states are described by a fair probability distribution instead of wave function (or density matrix) is developed to consider cosmological dynamics. The evolution of the universe state is described by standard positive transition probability (tomographic transition probability) instead of the complex transition probability amplitude (Feynman path integral) of the standard approach. The latter one is expressed in terms of the tomographic transition probability. Examples of minisuperspaces in the framework of the suggested approach are presented. Possibility of observational applications of the universe tomographs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manko, V.I., Marmo G., Stornaiolo, C.: “Radon transform of Wheeler-De Witt equation and tomography of quantum states of the universe,” Gen. Rel. Grav. 37 (2005) 99, gr-qc/0307084.

  2. Hawking, S.W.: Nucl. Phys B239, 257 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. DeWitt, B.S.: Phys. Rev. 160, 1113, (1983); J. A Wheeler in Battelle Rencontres, edited by C. DeWitt and J. A. Wheeler (Benjamin, New York, 1968)

  4. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 28, 2960, (1983) and Cosmology” eds. T. Piran

  5. Page, D.N.: Phys. Rev. D 34, 2267, (1986)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hawking, S.W.: Phys. Scr. T15, 151 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wigner, E.: Phys. Rev. 40, 749 (1932)

    Article  MATH  ADS  Google Scholar 

  8. Antonsen, F.: “Deformation Quantisation of Gravity,” gr-qc/9712012

  9. Manko, O.V., Manko, V.I., Marmo, G.: Phys. Scr. 62, 446, (2000)

    Google Scholar 

  10. Manko, O.V., Manko, V.I., Marmo, G.: J. Phys. A 35, 699, (2002)

    Google Scholar 

  11. Bajen, F., Flato, M., Fronsdal, M., Lichnerowicz, C., Sternheimer, D.: Lett. Math. Phys. 1, 521 (1975)

    ADS  MathSciNet  Google Scholar 

  12. Esposito, G., Marmo, G. Sudarshan, G.: “From Classical to Quantum Mechanics An Introduction to the Formalism, Foundations and Applications” Cambridge University Press (2004)

  13. Mancini, S., Manko, V.I., Tombesi, P., Opt.B J.: Quantum and Semiclass. Opt., 7, 615 (1995)

    Article  ADS  Google Scholar 

  14. Manko, O.V., Manko, V. I., Russ. J.: Laser Res. 18, 407 (1997)

    Article  Google Scholar 

  15. Manko, V.I., Mendes, R.V.: Phys. Lett. A263, 53 (1999)

    ADS  Google Scholar 

  16. Manko, V.I., Mendes, R.V.: Physica D145, 330 (2000)

    ADS  Google Scholar 

  17. Lemos, N.A.: J. Math. Phys. 37 (1996) 1449 [arXiv:gr-qc/9511082]

  18. Man'ko, O.V.: Theor. Math. Phys. 121, 285 (1999)

    Article  Google Scholar 

  19. Faraoni, V.: Am. J. Phys. 67, 732 (1999) [arXiv:physics/9901006]

    Google Scholar 

  20. Stornaiolo, C.: Phys. Lett. A 189, 351 (1994)

    Article  ADS  Google Scholar 

  21. Manko, M.A., Russ. J.: Laser Res. 21, 421 (2000)

    Google Scholar 

  22. Manko, M.A., Russ. J.: Laser Res. 22, 168 (2001)

    Article  Google Scholar 

  23. Manko, M.A., Manko, V.I., Mendes R.V.: J Phys A 34, 8321 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gousheh, S.S., Sepangi, H.R.: Phys. Lett. A 272, 304 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. D'Ariano, G.M., Mancini, S., Manko, V.I., Tombesi, P.: Quantum Semiclass. Opt 8, 1017, (1996), quant-ph/9606034

  26. Manko, V.I., Rosa, L., Vitale, P.: Phys. Lett B 439, 328 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lapchinsky, V.G., Rubakov, V.A.: Teor. Mat. Fiz. 33, 364 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stornaiolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man`ko, V.I., Marmo, G. & Stornaiolo, C. Cosmological dynamics in tomographic probability representation. Gen Relativ Gravit 37, 2003–2014 (2005). https://doi.org/10.1007/s10714-005-0161-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-005-0161-5

Keywords

Navigation