Skip to main content
Log in

(Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We extend the derivation of the Hawking temperature of a Schwarzschild black hole via the Heisenberg uncertainty principle to the de Sitter and anti-de Sitter spacetimes. The thermodynamics of the Schwarzschild-(anti-)de Sitter black holes is obtained from the generalized uncertainty principle of string theory and non-commutative geometry. This may explain why the thermodynamics of (anti-)de Sitter-like black holes admits a holographic description in terms of a dual quantum conformal field theory, whereas the thermodynamics of Schwarzschild-like black holes does not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Google Scholar 

  2. Adler, R.J., Chen, P., Santiago, D.I.: Gen. Rel. Grav. 33, 2101 (2001) [arXiv:gr-qc/0106080]

    Google Scholar 

  3. Novikov, I.D., Frolov, V.P.: Physics of Black Holes, Fundamental theories of physics 27, Kluwer Academic, Dordrecht, Netherlands (1989)

    Google Scholar 

  4. Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003) [arXiv:hep-th/0106111]

    Google Scholar 

  5. Cadoni, M.: Phys. Rev. D 69, 084021 (2004) [arXiv:gr-qc/0311056]

    Google Scholar 

  6. Cai, R.G.: Phys. Lett. B 525, 331 (2002) [arXiv:hep-th/0111093]

    Google Scholar 

  7. Chen, P., Adler, R.J.: Nucl. Phys. Proc. Suppl. 124, 103 (2003) [arXiv:gr-qc/0205106]; Cavaglià, M., Das, S., Maartens, R.: Class. Quant. Grav. 20, L205 (2003) [arXiv:hep-ph/0305223]; Cavaglià, M., Das, S.: Class. Quant. Grav. 21, 4511 (2004) [arXiv:hep-th/0404050]; Hossenfelder, S., Bleicher, M., Hofmann, S., Ruppert, J., Scherer, S., Stocker, H.: Phys. Lett. B 575, 85 (2003) [arXiv:hep-th/0305262]

  8. Maggiore, M.: Phys. Rev. D 49, 5182 (1994) [arXiv:hep-th/9305163]; Maggiore, M.: Phys. Lett. B 319, 83 (1993) [arXiv:hep-th/9309034]

  9. Maggiore, M.: Phys. Lett. B 304, 65 (1993) [arXiv:hep-th/9301067]; Scardigli, F.: Phys. Lett. B 452, 39 (1999) [arXiv:hep-th/9904025]; Scardigli, F., Casadio, R.: Class. Quant. Grav. 20, 3915 (2003) [arXiv:hep-th/0307174]

  10. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989); Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 347, 550 (1990); Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 403, 707 (1993).

  11. Konishi, K., Paffuti, G., Provero, P.: Phys. Lett. B 234, 276 (1990).

    Google Scholar 

  12. Setare, M.R.: Phys. Rev. D 70, 087501 (2004) [arXiv:hep-th/0410044]; Camacho, A.: Gen. Rel. Grav. 34, 1839 (2002) [arXiv:gr-qc/0206006]; Shalyt-Margolin, A.E., Tregubovich, A.Y.: Mod. Phys. Lett. A 19, 71 (2004) [arXiv:hep-th/0311034]; Kalyana Rama, S.: Phys. Lett. B 519, 103 (2001) [arXiv:hep-th/0107255]; Hassan, S.F., Sloth, M.S.: Nucl. Phys. B 674, 434 (2003) [arXiv:hep-th/0204110]

  13. Kempf, A.: J. Math. Phys. 35, 4483 (1994) [arXiv:hep-th/9311147]; Kempf, A.: arXiv:hep-th/9405067; Kempf, A.: J. Math. Phys. 38, 1347 (1997) [arXiv:hep-th/9602085]; Hinrichsen, H., Kempf, A.: J. Math. Phys. 37, 2121 (1996) [arXiv:hep-th/9510144]

  14. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-th/9204099].

    Google Scholar 

  15. Cadoni, M., Carta, P.: [arXiv:hep-th/0211018]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cavagliá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolen, B., Cavagliá, M. (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. Gen Relativ Gravit 37, 1255–1262 (2005). https://doi.org/10.1007/s10714-005-0108-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-005-0108-x

Keywords

Navigation