Skip to main content
Log in

Duality in Yang’s theory of gravity

  • Letter
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The historical route and the current status of a curvature-squared model of gravity, in the affine form proposed by Yang, is briefly reviewed. Due to its inherent scale invariance, it enjoys some advantage for quantization, similarly as internal Yang-Mills fields. However, the exact vacuum solutions with double duality properties exhibit a ‘vacuum degeneracy’. By modifying the duality via a scale breaking term, we demonstrate that only the Einstein equations with induced cosmological constant emerge for the classical background, even when coupled to matter sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191 (1954)

    Article  CAS  Google Scholar 

  2. Yang, C.N.: Integral formalism for gauge fields. Phys. Rev. Lett. 33, 445–447 (1974)

    Article  Google Scholar 

  3. Mills, R.: Am. J. Phys. 57, 493 (1989)

    Article  Google Scholar 

  4. Mielke, E.W., Hehl, F.W.: Die Entwicklung der Eichtheorien: Margi-na-li-en zu deren Wissenchaftsgeschichte. In: Deppert, W. Hübner, K. Oberschelp A. und Weidemann V. (eds.), Exakte Wissenschaften und Ihre Philosophische Grundlegung–-Vorträ-ge des Internationalen Hermann–Weyl–Kongres-ses, pp. 191–231. Verlag Peter Lang, Frankfurt a. M. Kiel (1988).

    Google Scholar 

  5. Schrödinger, E.: Diracsches Elektron im Schwerefeld I. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 11, 105 (1932)

    Google Scholar 

  6. Mielke, E.W.: Beautiful gauge field equations in Clifforms. Int. J. Theor. Phys. 40, 171–190 (2001)

    Article  Google Scholar 

  7. Weyl, H.: Eine neue Erweiterung der Relativit“atstheorie”, Ann. Phys. (Leipzig) IV. Folge 59, 103 (1919)

    Google Scholar 

  8. Stephenson, G.: Nuovo Cimento 9, 263 (1958)

    Google Scholar 

  9. Higgs, P.W.: Nuovo Cimento 11, 816 (1959)

    Google Scholar 

  10. Kilmister, C.W., Newman, D.L.: Proc. Cambridge Phil. Soc. (Math. Phys. Sci.) 57, 851 (1961)

    Google Scholar 

  11. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Phys. Rept. 258, 1–171 (1995)

    Article  Google Scholar 

  12. Guilfoyle, B.S., Nolan, B.C.: Yang’s gravitational theory. Gen. Relativ. Gravit. 30, 473 (1998)

    Article  Google Scholar 

  13. Weyl, H.: Gravitation and the electron. Proc. Natl. Acad. Sci. 15, 323, Washington (1929)

    CAS  Google Scholar 

  14. Mielke, E.W.: Ashtekar’s complex variables in general relativity and its teleparallelism equivalent. Ann. Phys. 219, 78–108, N.Y. (1992)

    Article  Google Scholar 

  15. Mielke, E.W.: Chern–Simons solution of the chiral teleparallelism constraints of gravity. Nucl. Phys. B 622, 457–471 (2002)

    Article  Google Scholar 

  16. Hehl, F.W., McCrea, J.D., Mielke, E.W., Ne’eman, Y.: Progress in metric–affine gauge theories of gravity with local scale invariance. Found. Phys. 19, 1075–1100 (1989)

    Google Scholar 

  17. Kibble, T.W.B., Stelle, K.S.: Gauge theories of gravity and supergravity. In: H. Ezawa and S. Kamefuchi, (eds.), Progress in Quantum Field Theory, Festschrift for Umezawa, p. 57 Elsevier Science Publications, Amsterdam (1986)

    Google Scholar 

  18. Mielke, E.W.: On pseudoparticle solutions in Yang’s theory of gravity. Gen. Rel. Grav. 13, 175–187 (1981)

    Article  Google Scholar 

  19. Thompson, A.H.: Phys. Rev. Lett. 34, 505; 35, 320 (1975)

    Google Scholar 

  20. Vassiliev, D.: Pseudoinstantons in metric-affine field theory. Gen. Rel. Grav. 34, 1239 (2002)

    Article  Google Scholar 

  21. Nakamichi, A., Sugamoto, A., Oda, I.: Phys. Rev. D 44, 3835 (1991)

    Article  Google Scholar 

  22. Kreimer, D., Mielke, E.W.: Comment on: Topological invariants, instantons, and the chiral anomaly on spaces with torsion. Phys. Rev. D 63, 0485011–4 (2001)

    Article  Google Scholar 

  23. Sezgin, E., van Nieuwenhuizen, P.: Phys. Rev. D 21, 3269–3280 (1980)

    Article  Google Scholar 

  24. Kuhfuß, R., Nitsch, J.: Gen. Relativ. Gravit. 18, 1207 (1986)

    Article  Google Scholar 

  25. Esser, W.: Exact solutions of the metric-affine gauge theory of gravity. Diploma Thesis, University of Cologne (1996)

  26. Vassiliev, D.: Quadratic metric-affine gravity. Annalen Phys. (Leipzig) 14, 231 (2005) [gr-qc/0304028]

    Article  Google Scholar 

  27. Eguchi, T., Gilkey, P.B.: Hanson, A.J: Gravitation, gauge theories and differential geometry. Phys. Rept. 66, 213 (1980)

    Article  Google Scholar 

  28. Schimming, R., Schmidt, H.J.: On the history of fourth order metric theories of gravitation. NTM-Schriftenr. Gesch. Naturw., Techn., Med. (Leipzig) 27, 41 (1990)

    Google Scholar 

  29. Mielke, E.W.: Consistent coupling to Dirac fields in teleparallelism: Comment on Metric-affine approach to teleparallel gravity. Phys. Rev. D 69, 128501 (2004)

    Article  Google Scholar 

  30. Mielke, E.W.: J. Math. Phys. 25, 663 (1984)

    Article  CAS  Google Scholar 

  31. Zhytnikov, V.V.: J. Math. Phys. 35, 6001–6017 (1994)

    Article  Google Scholar 

  32. Dereli, T., Tucker, R.W.: A broken gauge approach to gravitational mass and charge. JHEP 0203, 041 (2002)

    Article  Google Scholar 

  33. Mielke, E.W.: Fortschr. Phys. 32, 639 (1984)

    CAS  Google Scholar 

  34. Gu, C.H., Hu, H.S., Li, D.Q., Shen, C.L., Xin, Y.L., Yang, C.N.: Riemannian spaces with local duality and gravitational instantons. Sci. Sin. 21, 475 (1978)

    Google Scholar 

  35. Jackiw, R.: Fifty years of Yang-Mills theory and my contribution to it. MIT preprint physics/0403109.

  36. MacDowell, S.W., Mansouri, F.: Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38, 739 (1977) [Erratum-ibid.] 38, 1376 (1977)

    Google Scholar 

  37. Pagels, H.R.: Gravitational gauge fields and the cosmological constant. Phys. Rev. D. 29, 1690 (1984)

    Article  CAS  Google Scholar 

  38. Tresguerres, R., Mielke, E.W.: Gravitational Goldstone fields from affine gauge theory. Phys. Rev. D 62, 44004 (2000)

    Article  Google Scholar 

  39. Stelle, K.S.: Phys. Rev. D 16, 953 (1977)

    Article  Google Scholar 

  40. Lee, C. Y., Ne’eman, Y.: Renormalization of gauge affine gravity. Phys. Lett. B 242, 59 (1990)

    Article  CAS  Google Scholar 

  41. Hamada, K. j.: On the BRST formulation of diffeomorphism invariant 4D quantum gravity. Resummation and higher order renormalization in 4D quantum gravity. Prog. Theor. Phys. 108, 399 (2002) [arXiv:hep-th/0005063]

    Article  Google Scholar 

  42. Mielke, E.W., Rincón Maggiolo, A.A.: Algebra for a BRST quantization of metric-affine gravity. Gen. Relativ. Gravit. 35, 771–789 (2003)

    Article  Google Scholar 

  43. Ne’eman, Y.: A superconnection for Riemannian gravity as spontaneously broken SL(4, R) gauge theory. Phys. Lett. B. 427, 19 (1998)

    Article  CAS  Google Scholar 

  44. Hehl, F.W., Kopczyński, W., McCrea, J.D., Mielke, E.W.: J. Math. Phys. 32, 2169 (1991)

    Article  Google Scholar 

  45. Nieh, H.T., Yan, M.L.: J. Math. Phys. 23, 373–374 (1982)

    Article  Google Scholar 

  46. Brans, C.H.: J. Math. Phys. 15, 1559 (1974); 16, 1008 (1975)

    Google Scholar 

  47. Atiyah, M.F, Hitchin, N.J, Singer, I.M.: Proc. R. Soc. (London) A 362, 425 (1978)

    Google Scholar 

  48. Lanczos, C.: A remarkable property of the Riemann–Christoffel tensor in four dimensions. Ann. Math. 39, 842 (1938)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckehard W. Mielke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, E.W., Rincón Maggiolo, A.A. Duality in Yang’s theory of gravity. Gen Relativ Gravit 37, 997–1007 (2005). https://doi.org/10.1007/s10714-005-0083-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-005-0083-2

Keywords

Navigation