Skip to main content
Log in

Dynamics of the universe with global rotation

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We analyze the dynamics of the FRW models with global rotation in terms of dynamical system methods. We reduce the dynamics of these models to the FRW models with some fictitious fluid which scales like radiation matter. This fluid mimics dynamical effects of global rotation. The significance of the global rotation of the Universe for the resolution of the acceleration and horizon problems in cosmology is investigated. It is found that the dynamics of the Universe can be reduced to the two-dimensional Hamiltonian dynamical system. Then the construction of the Hamiltonian allows for full classification of evolution paths. On the phase portraits we find the domains of cosmic acceleration for the globally rotating universe as well as the trajectories for which the horizon problem is solved. We show that the FRW models with global rotation are structurally stable. This proves that the universe acceleration is due to the global rotation. It is also shown how global rotation gives a natural explanation of the empirical relation between angular momentum for clusters and superclusters of galaxies. The relation J ~ M2 is obtained as a consequence of self similarity invariance of the dynamics of the FRW model with global rotation. In derivation of this relation we use the Lie group of symmetry analysis of differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obukhov, Y. N., Chrobok, T., Scherfner, M.: Phys. Rev. D. 66, 043518 (2002)

    Article  Google Scholar 

  2. Lanczos, K.: Z. Phys. 21, 73 (1924); English translation see Gen. Rel. Grav. 29, 363 (1997)

  3. Gamov, G.: Nature 158, 549 (1946)

    Google Scholar 

  4. Goedel, K.: Rev. Mod. Phys. 21, 447 (1949); reprint see Gen. Rel. Grav. 32, 1409 (2000)

  5. Hawking, S.W.: Mon. Not. R. Astr. Soc. 142, 129 (1969)

    Google Scholar 

  6. Collins, C.B., Hawking, S.W.: Mon. Not. R. Astr. Soc. 162, 307 (1973)

    Google Scholar 

  7. Barrow, J.D., Juszkiewicz, R., Sonoda, D.: Mon. Not. R. Astr. Soc. 213, 917 (1985)

    Google Scholar 

  8. Bunn, E.F., Ferreira, P., Silk, J.: Phys. Rev. Lett. 77, 2883 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. Kogut, A., Hinshaw, G., Banday, A.: Phys. Rev. D 55, 1901 (1997)

    Article  CAS  Google Scholar 

  10. Heckmann, O., Schücking, E.: Handbuch der Physik. In: Flügge, S. (ed.) Springer-Verlag, Berlin, Vol. LIII, 489 (1959)

    Google Scholar 

  11. Heckmann, O.: Astron. J. 66, 205 (1961)

    Article  Google Scholar 

  12. Szekeres, P., Rankin, R.: Australian Math. Soc. B 20, 114 (1977)

    Google Scholar 

  13. Senovilla, J.M.M., Sopuerta, C.F., Szekeres, P.: Gen. Rel. Grav. 30, 389 (1998)

    Article  Google Scholar 

  14. Godlowski, W., Szydlowski, M., Flin, P., Biernacka, M.: Gen. Rel. Grav. 35, 907 (2003)

    Article  MathSciNet  Google Scholar 

  15. King, A.R., Ellis, G.F.R.: Commun. Math. Phys. 31, 209 (1973)

    Article  Google Scholar 

  16. Raychaudhuri, A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979)

    Google Scholar 

  17. Ellis, G.F.R.: Cargèse Lectures in Physics. In: Schatzman, E. (ed.) Gordon and Breach New York, Vol. 6 (1973)

    Google Scholar 

  18. Li, L.-X.: Gen. Rel. Grav. 30, 497 (1998)

    Article  CAS  MathSciNet  Google Scholar 

  19. Barrow, J.D., Tsagas, C.G.: Class. Quant. Grav. 21, 1773 (2004)

    Article  Google Scholar 

  20. Silk, J.: Mon. Not. R. Astr. Soc. 147, 13 (1970)

    Google Scholar 

  21. Birch, P.: Nature 298, 451 (1982)

    Article  Google Scholar 

  22. Phinney, E.S., Webster, R.L.: Nature 301, 735 (1983)

    Article  Google Scholar 

  23. Bietenholz, M.F., Kronberg, P.P.: Astroph. J. 287, L1 (1984)

    Article  Google Scholar 

  24. Fil’chenkov, M.L.: Frontiers of Particle Physics. In: Studenikin, A. (ed.) World Scientific, Singapore, 284 (2003)

    Google Scholar 

  25. Djorgovski, A.: Nearly Normal Galaxies. In: Faber, S.M. (ed.) Springer Verlag, New York, 227 (1987)

    Google Scholar 

  26. Flin, P., Godlowski, W.: Mon. Not. R. Astr. Soc. 222, 525 (1986)

    Google Scholar 

  27. Kashikawa, N., Okamura, S.: PASJ 44, 493 (1992)

    Google Scholar 

  28. Godlowski, W.: Mon. Not. R. Astr. Soc. 265, 874 (1993)

    Google Scholar 

  29. Godlowski, W.: Mon. Not. R. Astr. Soc. 271, 19 (1994)

    Google Scholar 

  30. Perlmutter, S. et al.: Nature 391, 51 (1998)

    Article  CAS  Google Scholar 

  31. Perlmutter, S. et al.: Astroph. J. 517, 565 (1999)

    Article  Google Scholar 

  32. Garnavich, P.M. et al.: Astroph. J. Lett. 493, L53 (1998)

    Article  Google Scholar 

  33. Riess, A.G. et al.: Astron. J. 116, 1009 (1998)

    Article  Google Scholar 

  34. Godlowski, W., Szydlowski, M.: Gen. Rel. Grav. 35, 2171 (2003)

    Article  MathSciNet  Google Scholar 

  35. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995)

    Google Scholar 

  36. Dabrowski, M., Stelmach, J.: Astron. J. 92, 1272 (1986)

    Article  CAS  Google Scholar 

  37. Robertson, H.P.: Rev. Mod. Phys. 5, 62 (1933)

    Article  Google Scholar 

  38. Dabrowski, M.: Ann. Phys. (N.Y) 248, 199 (1996)

    Article  CAS  Google Scholar 

  39. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

  40. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  CAS  Google Scholar 

  41. Godlowski, W., Szydlowski, M.: Gen. Rel. Grav. 36, 767 (2004)

    Article  Google Scholar 

  42. Barrow, J.D.: Phys. Rev. D 59, 043515 (1999)

    Article  Google Scholar 

  43. Wesson, P.S.: Astron. Astroph. 80, 269 (1979)

    Google Scholar 

  44. Wesson, P.S.: Astron. Astroph. 119, 313 (1983)

    Google Scholar 

  45. Barenblatt, G.I.: Scaling, Self-similarity, and Intermediate Asymptotes. Cambridge University Press, New York (1996)

    Google Scholar 

  46. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer-Verlag, New York (1989)

    Google Scholar 

  47. Stephani, H.: Differential Equations, Their Solution Using Symmetries. Cambridge University Press, New York (1989)

    Google Scholar 

  48. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    Google Scholar 

  49. Kippenhahn, R.: Stellar Structure and Evolution. Springer-Verlag, Berlin (1980)

    Google Scholar 

  50. Collins, C.B.: J. Math. Phys. 18, 134 (1977)

    Google Scholar 

  51. Biesiada, M., Golda, Z., Szydlowski, M.: J. Phys. A 20, 1313 (1988)

    Google Scholar 

  52. Biesiada, M., Szydlowski, M.: J. Phys. A 21, 3409 (1988)

    Google Scholar 

  53. Rudzki, A.: Bull. Astroph. 19 134 (1902)

    Google Scholar 

  54. Ellis, G.F.R., Van Helst, H.: Theoretical and Observational Cosmology. In: Marc Lachièze-Rey (ed.) NATO Science Series Vol. 541 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Szydłowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szydłowski, M., Godłowski, W. Dynamics of the universe with global rotation. Gen Relativ Gravit 37, 907–936 (2005). https://doi.org/10.1007/s10714-005-0075-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-005-0075-2

Keywords

Navigation