Skip to main content
Log in

Photonic Seismology: A New Decade of Distributed Acoustic Sensing in Geophysics from 2012 to 2023

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

This paper delivers an in-depth bibliometric analysis of distributed acoustic sensing (DAS) research within the realm of geophysics, covering the period from 2012 to 2023 and drawing on data from the Web of Science. By employing bibliographic and structured network analysis methods, including the use of Bibliometrix and VOSviewer®, the study highlights the most influential scholars, leading institutions, and pivotal research contributions that have significantly shaped the field of DAS in geophysics. The research delves into key collaborative dynamics, unraveling them through co-authorship network analysis, and delves into thematic developments and trajectories via comprehensive co-citation and keyword co-occurrence network analyses. These analyses elucidate the most robust and prominent areas within DAS research. A critical insight gained from this study is the rise of ‘photonic seismology’ as an emerging interdisciplinary domain, exemplifying the fusion of photonic sensing techniques with seismic science. This paper also discusses certain limitations inherent in the study and concludes with implications for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ajo-Franklin JB, Dou S, Lindsey NJ, Monga I, Tracy C, Robertson M, Rodriguez Tribaldos V, Ulrich C, Freifeld B, Daley T, Li X (2019) Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci Rep. https://doi.org/10.1038/s41598-018-36675-8

    Article  Google Scholar 

  • Aki K, Richards PG (2002) Quantitative seismology. University Science Books, Melville

    Google Scholar 

  • Aoyama K, Nakagawa K, Itoh T (1981) Optical time domain reflectometry in a single-mode fiber. IEEE J Quantum Electron 17(6):862–868. https://doi.org/10.1109/jqe.1981.1071237

    Article  Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix: An r-tool for comprehensive science mapping analysis. J Informet 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  • Bamel UK, Pandey R, Gupta A (2020) Safety climate: systematic literature network analysis of 38 years (1980–2018) of research. Accid Anal Prev 135:105387. https://doi.org/10.1016/j.aap.2019.105387

    Article  Google Scholar 

  • Becker MW, Coleman TI (2019) Distributed acoustic sensing of strain at earth tide frequencies. Sensors 19(9)

  • Beliaeva T, Ferasso M, Kraus S, Mahto RV (2022) Marketing and family firms: Theoretical roots, research trajectories, and themes. J Bus Res 144:66–79. https://doi.org/10.1016/j.jbusres.2022.01.094

    Article  Google Scholar 

  • Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169(3):1239–1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x

    Article  Google Scholar 

  • Biscaro C, Giupponi C (2014) Co-authorship and bibliographic coupling network effects on citations. PLoS ONE 9(6):e99502. https://doi.org/10.1371/journal.pone.0099502

    Article  CAS  Google Scholar 

  • Booth AD, Christoffersen P, Schoonman C, Clarke A, Hubbard B, Law R, Doyle SH, Chudley TR, Chalari A (2020) Distributed acoustic sensing of seismic properties in a borehole drilled on a fast-flowing greenlandic outlet glacier. Geophys Res Lett 47(13)

  • Boyd RW, Gaeta AL, Giese E (2008) Nonlinear optics. In: Springer Handbook of Atomic, Molecular, and Optical Physics, Springer, pp 1097–1110

  • Bucaro JA, Dardy HD, Carome EF (1977) Optical fiber acoustic sensor. Appl Opt 16(7):1761. https://doi.org/10.1364/ao.16.001761

    Article  CAS  Google Scholar 

  • Chambers D, Shragge J (2023) Seismoacoustic monitoring of a longwall face using distributed acoustic sensing. Bull Seismol Soc Am 113(4):1652–1663

    Article  Google Scholar 

  • Chen C, Ibekwe-SanJuan F, Hou J (2010) The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis. J Am Soc Inform Sci Technol 61(7):1386–1409. https://doi.org/10.1002/asi.21309

    Article  Google Scholar 

  • Cheng B, Wang M, Mørch AI, Chen NS, Kinshuk Spector JM (2014) Research on e-learning in the workplace 2000–2012: a bibliometric analysis of the literature. Educ Res Rev 11:56–72. https://doi.org/10.1016/j.edurev.2014.01.001

    Article  Google Scholar 

  • Cheng F, Chi B, Lindsey NJ, Dawe TC, Ajo-Franklin JB (2021) Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Sci Rep 11(1):5613

    Article  CAS  Google Scholar 

  • Cheng F, Lindsey NJ, Sobolevskaia V, Dou S, Freifeld B, Wood T, James SR, Wagner AM, Ajo-Franklin JB (2022) Watching the cryosphere thaw: Seismic monitoring of permafrost degradation using distributed acoustic sensing during a controlled heating experiment. Geophys Res Lett 49(10):e2021GL097195

  • Cheng F, Ajo-Franklin JB, Nayak A, Tribaldos VR, Mellors R, Dobson P, the Imperial Valley Dark Fiber Team (2023) Using dark fiber and distributed acoustic sensing to characterize a geothermal system in the Imperial Valley, Southern California. J Geophys Res Solid Earth 128(3)

  • Cobo M, López-Herrera A, Herrera-Viedma E, Herrera F (2011) An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. J Informet 5(1):146–166. https://doi.org/10.1016/j.joi.2010.10.002

    Article  Google Scholar 

  • Conway C, Mondanos M (2015) An introduction to fibre optic intelligent distributed acoustic sensing (idas) technology for power industry applications. In: 9th International Conference on Insulated Power Cables, Jicable15-Versailles Jun, pp 21–25

  • Correa J, Egorov A, Tertyshnikov K, Bona A, Pevzner R, Dean T, Freifeld B, Marshall S (2017) Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets - a co2crc otway project data example. The Leading Edge 36(12):994a1–994a7, https://doi.org/10.1190/tle36120994a1.1

  • Cox B, Wills P, Kiyashchenko D, Mestayer J, Lopez J, Bourne S, Lupton R, Solano G, Henderson N, Hill D et al (2012) Distributed acoustic sensing for geophysical measurement, monitoring and verification. CSEG recorder 37(2):7–13

    Google Scholar 

  • Culshaw B, Kersey A (2008) Fiber-optic sensing: a historical perspective. J Lightwave Technol 26(9):1064–1078

    Article  Google Scholar 

  • Daley T, Miller D, Dodds K, Cook P, Freifeld B (2015) Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys Prospect 64(5):1318–1334. https://doi.org/10.1111/1365-2478.12324

    Article  Google Scholar 

  • Daley TM, Freifeld BM, Ajo-Franklin J, Dou S, Pevzner R, Shulakova V, Kashikar S, Miller DE, Goetz J, Henninges J, Lueth S (2013) Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead Edge 32(6):699–706

    Article  Google Scholar 

  • Dean T, Cuny T, Hartog AH (2017) The effect of gauge length on axially incident p-waves measured using fibre optic distributed vibration sensing. Geophys Prospect 65(1):184–193

    Article  Google Scholar 

  • Dou S, Lindsey N, Wagner AM, Daley TM, Freifeld B, Robertson M, Peterson J, Ulrich C, Martin ER, Ajo-Franklin JB (2017) Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study. Sci Rep 7(1), https://doi.org/10.1038/s41598-017-11986-4

  • van Eck NJ, Waltman L (2009) Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538. https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  • van Eck NJ, Waltman L (2014) Citnetexplorer: a new software tool for analyzing and visualizing citation networks. J Informet 8(4):802–823. https://doi.org/10.1016/j.joi.2014.07.006

    Article  Google Scholar 

  • Egorov A, Correa J, Bóna A, Pevzner R, Tertyshnikov K, Glubokovskikh S, Puzyrev V, Gurevich B (2018) Elastic full-waveform inversion of vertical seismic profile data acquired with distributed acoustic sensors. Geophysics 83(3):R273–R281

    Article  Google Scholar 

  • Fabelinskii IL (2012) Molecular scattering of light. Springer Science & Business Media

  • Fang G, Li YE, Zhao Y, Martin ER (2020) Urban near-surface seismic monitoring using distributed acoustic sensing. Geophys Res Lett 47(6):e2019GL086115

  • Fang G, Zhou Tan Y, Nilot E, Niu Y, Elita Li Y, Cheng A (2022) Monitoring tunneling construction using distributed acoustic sensing. In: Second International Meeting for Applied Geoscience & Energy, Society of Exploration Geophysicists and American Association of Petroleum Geologists

  • Fang J, Yang Y, Shen Z, Biondi E, Wang X, Williams EF, Becker MW, Eslamian D, Zhan Z (2023) Directional sensitivity of DAS and its effect on Rayleigh-wave tomography: a case study in Oxnard, California. Seismol Soc Am 94(2A):887–897

    Google Scholar 

  • Fang Z, Chin KK, Qu R, Cai H (2012) Fundamentals of optical fiber sensors. Wiley. https://doi.org/10.1002/9781118381717

  • Feng Q, Li Y (2022) Denoising deep learning network based on singular spectrum analysis-das seismic data denoising with multichannel svddcnn. IEEE Trans Geosci Remote Sens 60:1–11. https://doi.org/10.1109/tgrs.2021.3071189

    Article  CAS  Google Scholar 

  • Fernández-Ruiz MR, Soto MA, Williams EF, Martin-Lopez S, Zhan Z, Gonzalez-Herraez M, Martins HF (2020) Distributed acoustic sensing for seismic activity monitoring. APL Photonics 5(3), https://doi.org/10.1063/1.5139602

  • Fichtner A, Bogris A, Nikas T, Bowden D, Lentas K, Melis NS, Simos C, Simos I, Smolinski K (2022) Theory of phase transmission fibre-optic deformation sensing. Geophys J Int 231(2):1031–1039. https://doi.org/10.1093/gji/ggac237

    Article  Google Scholar 

  • Glänzel W, Czerwon HJ (1996) A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level. Scientometrics 37(2):195–221. https://doi.org/10.1007/bf02093621

    Article  Google Scholar 

  • Gorshkov BG, Yüksel K, Fotiadi AA, Wuilpart M, Korobko DA, Zhirnov AA, Stepanov KV, Turov AT, Konstantinov YA, Lobach IA (2022) Scientific applications of distributed acoustic sensing: state-of-the-art review and perspective. Sensors 22(3):1033. https://doi.org/10.3390/s22031033

    Article  CAS  Google Scholar 

  • Grattan K, Meggitt B (2000) Optical fiber sensor technology: advanced applications-Bragg gratings and distributed sensors, vol 5. Springer Science & Business Media

  • Hartog AH (2017) An introduction to distributed optical fibre sensors. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  • He Z, Liu Q (2021) Optical fiber distributed acoustic sensors: a review. J Lightwave Technol 39(12):3671–3686. https://doi.org/10.1109/jlt.2021.3059771

    Article  Google Scholar 

  • He Z, Liu Q, Fan X, Chen D, Wang S, Yang G (2018) A review on advances in fiber-optic distributed acoustic sensors (DAS). In: CLEO Pacific Rim Conference, OSA, CLEOPR, https://doi.org/10.1364/cleopr.2018.th2l.1

  • Hoppe B, Reinelt C (2010) Social network analysis and the evaluation of leadership networks. Leadersh Q 21(4):600–619. https://doi.org/10.1016/j.leaqua.2010.06.004

    Article  Google Scholar 

  • Hornman JC (2017) Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables. Geophys Prospect 65(1):35–46

    Article  Google Scholar 

  • Hou J, Yang X, Chen C (2018) Emerging trends and new developments in information science: a document co-citation analysis (2009–2016). Scientometrics 115(2):869–892. https://doi.org/10.1007/s11192-018-2695-9

    Article  Google Scholar 

  • de la Hoz-Correa A, Muñoz-Leiva F, Bakucz M (2018) Past themes and future trends in medical tourism research: a co-word analysis. Tour Manage 65:200–211. https://doi.org/10.1016/j.tourman.2017.10.001

    Article  Google Scholar 

  • Jin G, Roy B (2017) Hydraulic-fracture geometry characterization using low-frequency DAS signal. Lead Edge 36(12):975–980

    Article  Google Scholar 

  • Jousset P, Reinsch T, Ryberg T, Blanck H, Clarke A, Aghayev R, Hersir GP, Henninges J, Weber M, Krawczyk CM (2018) Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat Commun 9(1), https://doi.org/10.1038/s41467-018-04860-y

  • Jousset P, Currenti G, Schwarz B, Chalari A, Tilmann F, Reinsch T, Zuccarello L, Privitera E, Krawczyk CM (2022) Fibre optic distributed acoustic sensing of volcanic events. Nat Commun 13(1):1753

    Article  CAS  Google Scholar 

  • Karrenbach M, Cole S, Ridge A, Boone K, Kahn D, Rich J, Silver K, Langton D (2019) Fiber-optic distributed acoustic sensing of microseismicity, strain and temperature during hydraulic fracturing. Geophysics 84(1):D11–D23

    Article  Google Scholar 

  • Kuvshinov BN (2016) Interaction of helically wound fibre-optic cables with plane seismic waves. Geophys Prospect 64(3):671–688

    Article  Google Scholar 

  • Landrø M, Bouffaut L, Kriesell HJ, Potter JR, Rørstadbotnen RA, Taweesintananon K, Johansen SE, Brenne JK, Haukanes A, Schjelderup O, Storvik F (2022) Sensing whales, storms, ships and earthquakes using an arctic fibre optic cable. Sci Rep 12(1):19226

    Article  Google Scholar 

  • Lee IS, Lee H, Chen YH, Chae Y (2020) Bibliometric analysis of research assessing the use of acupuncture for pain treatment over the past 20 years. J Pain Res 13:367–376. https://doi.org/10.2147/jpr.s235047

    Article  Google Scholar 

  • Lee PC, Su HN (2010) Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation 12(1):26–40

    Article  Google Scholar 

  • Lellouch A, Lindsey NJ, Ellsworth WL, Biondi BL (2020) Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment. Seismol Res Lett 91(6):3256–3268

    Article  Google Scholar 

  • Leung XY, Sun J, Bai B (2017) Bibliometrics of social media research: a co-citation and co-word analysis. Int J Hosp Manag 66:35–45. https://doi.org/10.1016/j.ijhm.2017.06.012

    Article  Google Scholar 

  • Li J, Zhu W, Biondi E, Zhan Z (2023) Earthquake focal mechanisms with distributed acoustic sensing. Nat Commun 14(1):4181

    Article  CAS  Google Scholar 

  • Li Y, Karrenbach M, Ajo-Franklin JB (2021a) A literature review: Distributed acoustic sensing (DAS) geophysical applications over the past 20 years. https://doi.org/10.1002/9781119521808.ch17

  • Li Y, Karrenbach M, Ajo-Franklin J (2022) Distributed acoustic sensing in geophysics: methods and applications, vol 268. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  • Li Z, Shen Z, Yang Y, Williams E, Wang X, Zhan Z (2021b) Rapid response to the 2019 ridgecrest earthquake with distributed acoustic sensing. AGU Advances 2(2)

  • Lindsey NJ, Martin ER (2021) Fiber-optic seismology. Annu Rev Earth Planet Sci 49(1):309–336. https://doi.org/10.1146/annurev-earth-072420-065213

    Article  CAS  Google Scholar 

  • Lindsey NJ, Martin ER, Dreger DS, Freifeld B, Cole S, James SR, Biondi BL, Ajo-Franklin JB (2017) Fiber-optic network observations of earthquake wavefields. Geophys Res Lett 44(23), https://doi.org/10.1002/2017gl075722

  • Lindsey NJ, Dawe TC, Ajo-Franklin JB (2019) Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366(6469):1103–1107. https://doi.org/10.1126/science.aay5881

    Article  CAS  Google Scholar 

  • Lindsey NJ, Rademacher H, Ajo-Franklin JB (2020) On the broadband instrument response of fiber-optic das arrays. J Geophys Res: Solid Earth 125(2), https://doi.org/10.1029/2019jb018145

  • Liokumovich LB, Ushakov NA, Kotov OI, Bisyarin MA, Hartog AH (2015) Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions. J Lightwave Technol 33(17):3660–3671. https://doi.org/10.1109/jlt.2015.2449085

    Article  CAS  Google Scholar 

  • Lu Y, Zhu T, Chen L, Bao X (2010) Distributed vibration sensor based on coherent detection of phase-otdr. J Lightwave Technol. https://doi.org/10.1109/jlt.2010.2078798

    Article  Google Scholar 

  • Martin ER, Castillo CM, Cole S, Sawasdee PS, Yuan S, Clapp R, Karrenbach M, Biondi BL (2017) Seismic monitoring leveraging existing telecom infrastructure at the sdasa: Active, passive, and ambient-noise analysis. Lead Edge 36(12):1025–1031. https://doi.org/10.1190/tle36121025.1

    Article  Google Scholar 

  • Martin ER, Huot F, Ma Y, Cieplicki R, Cole S, Karrenbach M, Biondi BL (2018) A seismic shift in scalable acquisition demands new processing: Fiber-optic seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal. IEEE Signal Process Mag 35(2):31–40

    Article  Google Scholar 

  • Martínez-López FJ, Merigó JM, Valenzuela-Fernández L, Nicolás C (2018) Fifty years of the European Journal of Marketing: a bibliometric analysis. Eur J Mark 52(1/2):439–468. https://doi.org/10.1108/ejm-11-2017-0853

    Article  Google Scholar 

  • Mateeva A, Mestayer J, Cox B, Kiyashchenko D, Wills P, Lopez J, Grandi S, Hornman K, Lumens P, Franzen A, Hill D, Roy J (2012) Advances in distributed acoustic sensing (DAS) for VSP. In: SEG Technical Program Expanded Abstracts 2012, Soc Explor Geophys, https://doi.org/10.1190/segam2012-0739.1

  • Mateeva A, Lopez J, Mestayer J, Wills P, Cox B, Kiyashchenko D, Yang Z, Berlang W, Detomo R, Grandi S (2013) Distributed acoustic sensing for reservoir monitoring with VSP. Lead Edge 32(10):1278–1283

    Article  Google Scholar 

  • Mateeva A, Lopez J, Potters H, Mestayer J, Cox B, Kiyashchenko D, Wills P, Grandi S, Hornman K, Kuvshinov B, Berlang W, Yang Z, Detomo R (2014) Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys Prospect 62(4):679–692. https://doi.org/10.1111/1365-2478.12116

    Article  Google Scholar 

  • Mateeva A, Lopez J, Chalenski D, Tatanova M, Zwartjes P, Yang Z, Bakku S, Vos Kd, Potters H (2017) 4D DAS VSP as a tool for frequent seismic monitoring in deep water. Lead Edge 36(12):995–1000

    Article  Google Scholar 

  • Melin G, Persson O (1996) Studying research collaboration using co-authorships. Scientometrics 36(3):363–377. https://doi.org/10.1007/bf02129600

    Article  Google Scholar 

  • Mestayer J, Cox B, Wills P, Kiyashchenko D, Lopez J, Costello M, Bourne S, Ugueto G, Lupton R, Solano G, Hill D, Lewis A (2011) Field trials of distributed acoustic sensing for geophysical monitoring. In: SEG Technical Program Expanded Abstracts 2011, Soc Explor Geophys, https://doi.org/10.1190/1.3628095

  • Mishra D, Gunasekaran A, Papadopoulos T, Childe SJ (2016) Big data and supply chain management: a review and bibliometric analysis. Ann Oper Res 270(1–2):313–336. https://doi.org/10.1007/s10479-016-2236-y

    Article  Google Scholar 

  • Paitz P, Edme P, Gräff D, Walter F, Doetsch J, Chalari A, Schmelzbach C, Fichtner A (2021) Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves. Bull Seismol Soc Am 111(1):1–10

    Article  Google Scholar 

  • Palmieri L, Schenato L, Santagiustina M, Galtarossa A (2022) Rayleigh-based distributed optical fiber sensing. Sensors 22(18):6811. https://doi.org/10.3390/s22186811

  • Pan Z, Liang K, Ye Q, Cai H, Qu R, Fang Z (2011) Phase-sensitive otdr system based on digital coherent detection. In: Optical Sensors and Biophotonics, OSA, ACP, https://doi.org/10.1364/acp.2011.83110s

  • Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808

    Article  Google Scholar 

  • Parker LM, Thurber CH, Zeng X, Li P, Lord NE, Fratta D, Wang HF, Robertson MC, Thomas AM, Karplus MS, Nayak A, Feigl KL (2018) Active-source seismic tomography at the Brady geothermal field, nevada, with dense nodal and fiber-optic seismic arrays. Seismol Res Lett 89(5):1629–1640. https://doi.org/10.1785/0220180085

    Article  Google Scholar 

  • Peng Z, Jian J, Wen H, Gribok A, Wang M, Liu H, Huang S, Mao ZH, Chen KP (2020) Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions. Opt Express 28(19):27277. https://doi.org/10.1364/oe.397509

    Article  CAS  Google Scholar 

  • Perianes-Rodriguez A, Waltman L, van Eck NJ (2016) Constructing bibliometric networks: A comparison between full and fractional counting. J Informet 10(4):1178–1195. https://doi.org/10.1016/j.joi.2016.10.006

    Article  Google Scholar 

  • Pevzner R, Isaenkov R, Yavuz S, Yurikov A, Tertyshnikov K, Shashkin P, Gurevich B, Correa J, Glubokovskikh S, Wood T, Freifeld B, Barraclough P (2021) Seismic monitoring of a small co2 injection using a multi-well DAS array: Operations and initial results of stage 3 of the co2crc Otway project. Int J Greenhouse Gas Control 110:103437. https://doi.org/10.1016/j.ijggc.2021.103437

    Article  CAS  Google Scholar 

  • Rey-Martí A, Ribeiro-Soriano D, Palacios-Marqués D (2016) A bibliometric analysis of social entrepreneurship. J Bus Res 69(5):1651–1655. https://doi.org/10.1016/j.jbusres.2015.10.033

    Article  Google Scholar 

  • Rodríguez Tribaldos V, Ajo-Franklin JB (2021) Aquifer monitoring using ambient seismic noise recorded with distributed acoustic sensing (DAS) deployed on dark fiber. J Geophys Res Solid Earth 126(4)

  • Rogers A (1999) Distributed optical-fibre sensing. Meas Sci Technol 10(8):R75–R99. https://doi.org/10.1088/0957-0233/10/8/201

    Article  CAS  Google Scholar 

  • Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307(5715):1615–1618. https://doi.org/10.1126/science.1108339

    Article  CAS  Google Scholar 

  • Sidenko E, Tertyshnikov K, Gurevich B, Pevzner R (2022) Das signature of reservoir pressure changes caused by a co2 injection: Experience from the co2crc otway project. Int J Greenhouse Gas Control 119:103735. https://doi.org/10.1016/j.ijggc.2022.103735

    Article  CAS  Google Scholar 

  • Sladen A, Rivet D, Ampuero JP, De Barros L, Hello Y, Calbris G, Lamare P (2019) Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables. Nat Commun 10(1):5777

    Article  CAS  Google Scholar 

  • Spica ZJ, Nishida K, Akuhara T, Pétrélis F, Shinohara M, Yamada T (2020a) Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophys Res Lett 47(16)

  • Spica ZJ, Perton M, Martin ER, Beroza GC, Biondi B (2020b) Urban seismic site characterization by fiber-optic seismology. J Geophys Res Solid Earth 125(3)

  • Spica ZJ, Castellanos JC, Viens L, Nishida K, Akuhara T, Shinohara M, Yamada T (2022) Subsurface imaging with ocean-bottom distributed acoustic sensing and water phases reverberations. Geophys Res Lett 49(2), https://doi.org/10.1029/2021gl095287

  • Spica ZJ, Ajo-Franklin J, Beroza GC, Biondi B, Cheng F, Gaite B, Luo B, Martin E, Shen J, Thurber C, Viens L, Wang H, Wuestefeld A, Xiao H, Zhu T (2023) Pubdas: a public distributed acoustic sensing datasets repository for geosciences. Seismol Res Lett 94(2A):983–998. https://doi.org/10.1785/0220220279

    Article  Google Scholar 

  • Taweesintananon K, Landrø M, Potter JR, Johansen SE, Rørstadbotnen RA, Bouffaut L, Kriesell HJ, Brenne JK, Haukanes A, Schjelderup O, Storvik F (2023) Distributed acoustic sensing of ocean-bottom seismo-acoustics and distant storms: a case study from Svalbard, Norway. Geophysics 88(3):B135–B150

    Article  Google Scholar 

  • Valenzuela LM, Merigó JM, Johnston WJ, Nicolas C, Jaramillo JF (2017) Thirty years of the Journal of Business & Industrial Marketing: a bibliometric analysis. J Bus Ind Mark 32(1):1–17. https://doi.org/10.1108/jbim-04-2016-0079

    Article  Google Scholar 

  • Walter F, Gräff D, Lindner F, Paitz P, Köpfli M, Chmiel M, Fichtner A (2020) Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat Commun 11(1):2436

    Article  CAS  Google Scholar 

  • Waltman L, van Eck NJ (2013) A smart local moving algorithm for large-scale modularity-based community detection. Eur Phys J B 86(11), https://doi.org/10.1140/epjb/e2013-40829-0

  • Wang C, Lim MK, Zhao L, Tseng ML, Chien CF, Lev B (2020) The evolution of omega-the international journal of management science over the past 40 years: a bibliometric overview. Omega 93:102098. https://doi.org/10.1016/j.omega.2019.08.005

    Article  Google Scholar 

  • Wang H, Li M, Tao G (2015) Current and future applications of distributed acoustic sensing as a new reservoir geophysics tool. Open Pet Eng J 8(1), https://doi.org/10.2174/1874834120150625e008

  • Wang HF, Zeng X, Miller DE, Fratta D, Feigl KL, Thurber CH, Mellors RJ (2018) Ground motion response to an ml 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays. Geophys J Int 213(3):2020-2036, https://doi.org/10.1093/gji/ggy102

  • Wang W, Chen L, Wang Y, Peng F (2022) Fiber-optic vibration sensing-ii: intrinsic sensing with scattered or transmitted light and their seismological applications (in chinese). Rev Geophys Planet Phys 53(2):119–137

    Google Scholar 

  • Wang Z, Lu B, Ye Q, Cai H (2020) Recent progress in distributed fiber acoustic sensing with phi-otdr. Sensors 20(22):6594. https://doi.org/10.3390/s20226594

    Article  Google Scholar 

  • Williams EF, Zhan Z, Martins HF, Fernández-Ruiz MR, Martín-López S, González-Herráez M, Callies J (2022) Surface gravity wave interferometry and ocean current monitoring with ocean-bottom DAS. J Geophys Res Oceans 127(5)

  • Williams EF, Ugalde A, Martins HF, Becerril CE, Callies J, Claret M, Fernandez-Ruiz MR, Gonzalez-Herraez M, Martin-Lopez S, Pelegri JL, Winters KB, Zhan Z (2023) Fiber-optic observations of internal waves and tides. J Geophys Res: Oceans 128(9), https://doi.org/10.1029/2023jc019980

  • Willis ME (2022) Distributed Acoustic Sensing for Seismic Measurements - What Geophysicists and Engineers Need to Know. Soc Explor Geophys 10(1190/1):9781560803850

    Google Scholar 

  • Wu N, Xing T, Li Y (2022) Multi-scale progressive fusion attention network based on small sample training for DAS noise suppression. IEEE Trans Geosci Remote Sens 60:1–12. https://doi.org/10.1109/tgrs.2022.3142805

    Article  Google Scholar 

  • Xie H, Zhang Y, Wu Z, Lv T (2020) A bibliometric analysis on land degradation: current status, development, and future directions. Land 9(1):28. https://doi.org/10.3390/land9010028

    Article  Google Scholar 

  • Xu T, Fang G, Jiang Y, Huang J, Li F, (2017) Distributed acoustic sensing: System and experiments. In, (2017) Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC). IEEE. https://doi.org/10.1109/oecc.2017.8114770

  • Xu X, Chen Q, Zhu Z (2022) Evolutionary overview of land consolidation based on bibliometric analysis in web of science from 2000 to 2020. Int J Environ Res Public Health 19(6):3218. https://doi.org/10.3390/ijerph19063218

    Article  Google Scholar 

  • Yassine S, Kadry S, Sicilia M (2021) Detecting communities using social network analysis in online learning environments: Systematic literature review. WIREs Data Mining and Knowledge Discovery 12(1), https://doi.org/10.1002/widm.1431

  • Yu C, Zhan Z, Lindsey NJ, Ajo-Franklin JB, Robertson M (2019) The potential of DAS in teleseismic studies: insights from the Goldstone experiment. Geophys Res Lett 46(3):1320–1328

    Article  Google Scholar 

  • Zeng X, Lancelle C, Thurber C, Fratta D, Wang H, Lord N, Chalari A, Clarke A (2017) Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at Garner Valley, California. Bull Seismol Soc Am 107(2):603–610. https://doi.org/10.1785/0120160168

    Article  Google Scholar 

  • Zhan Z (2019) Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismol Res Lett 91(1):1–15. https://doi.org/10.1785/0220190112

    Article  Google Scholar 

  • Zhang L, Xie J, Chi B, Liu H, Bao F (2023) Recent advances in distributed acoustic sensing applications for seismic imaging (in chinese). Rev Geophys Planet Phys 54(2):140–149

    Google Scholar 

  • Zhu HH, Liu W, Wang T, Su JW, Shi B (2022) Distributed acoustic sensing for monitoring linear infrastructures: current status and trends. Sensors 22(19):7550

    Article  Google Scholar 

  • Zhu T, Xiao X, He Q, Diao D (2013) Enhancement of snr and spatial resolution in \(\varphi\)-otdr system by using two-dimensional edge detection method. J Lightwave Technol 31(17):2851–2856. https://doi.org/10.1109/jlt.2013.2273553

    Article  Google Scholar 

  • Zhu T, Shen J, Martin ER (2021) Sensing earth and environment dynamics by telecommunication fiber-optic sensors: an urban experiment in Pennsylvania, USA. Solid Earth 12(1):219–235

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Startup Funds of Zhejiang University. I appreciate Ke Zhao, Jianbo Guan, Haoyuan Sun, and Ruijie Wu for their contributions in refining data and complementing keywords. I am very grateful to Dr. Longfeng Zhao for assistance with the Bibliometric package. The Bibliometrix package and Biblioshiny app, both open-source R packages, can be found at https://www.bibliometrix.org/home/index.php/layout/biblioshiny. Additionally, VOSviewer®, a freely available software for network analysis, can be downloaded from https://www.vosviewer.com/. All these resources were last accessed in December 2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F. Photonic Seismology: A New Decade of Distributed Acoustic Sensing in Geophysics from 2012 to 2023. Surv Geophys (2024). https://doi.org/10.1007/s10712-024-09840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10712-024-09840-0

Keywords

Navigation