Skip to main content

Advertisement

Log in

Near-Surface Seismic Arrival Time Picking with Transfer and Semi-Supervised Learning

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The understanding of subsurface information on the Earth is crucial in numerous fields such as economics of oil and gas, geophysical exploration, archaeology and hydro-geophysics, particularly in a context of climate change. The methodology consists in reconstructing the seismic velocity model of the near surface, that contains information about the basement structure, by solving the inverse problem and resolving the related complex nonlinear systems with the data collected from seismic experiments and measurements. In the last few years, many deep neural networks have been proposed to simplify the seismic inversion problem based, for instance, on automatic differentiation of the adjoint operator, or on automatic arrival time picking. However, such approaches require a large amount of labeled training data, which are hardly available in real applications. We present here a deep learning approach for arrival time picking, aimed to deal with unlabeled data. The main building blocks are transfer learning, as well as a semi-supervised learning strategy where the pseudo-labels are greedily computed with robust regression, and classification algorithms. The hybrid method showcases very high scores when evaluating on synthetic data, and its application to a real dataset containing a limited amount of labeled data shows the computational efficiency and very accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adler A, Araya-Polo M, Poggio T (2021) Deep learning for seismic inverse problems: toward the acceleration of geophysical analysis workflows. IEEE Signal Process Mag 38(2):89–119. https://doi.org/10.1109/MSP.2020.3037429

    Article  Google Scholar 

  • Akazawa T (2004) A technique for automatic detection of onset time of p-and s-phases in strong motion records. In: Proc of the 13th World Conf. on Earthquake Engineering, Vancouver, Canada

  • Aki K, Richards PG (1980) Quantitative seismology, theory and methods. W. H, Freeman, San Francisco, USA

    Google Scholar 

  • Araya-Polo M, Jennings J, Adler A, Dahlke T (2018) Deep-learning tomography. Lead Edge 37(1):58–66

    Article  Google Scholar 

  • Baeten G, Maag JAD, Plessix RE, Klaasen R, Qureshi T, Kleemeyer M, ten Kroode APE, Rujie Z (2013) The use of low frequencies in a full-waveform inversion and impedance inversion land seismic case study. Geophys Prospect 61(4):701–711

    Article  Google Scholar 

  • Bauer K, Schulze A, Ryberg T, Sobolev SV, Weber M (2003) Classification of lithology from seismic tomography: a case study from the messum igneous complex, namibia. J Geophys Res 108:2152

    Google Scholar 

  • Bauer K, Moeck I, Norden B, Schulze A, Weber M, Wirth H (2010) Tomographic p wave velocity and vertical velocity gradient structure across the geothermal site groß schönebeck (ne german basin): Relationship to lithology, salt tectonics, and thermal regime. Journal of Geophysical Research: Solid Earth, 115(B8), https://doi.org/10.1029/2009JB006895, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JB006895

  • Baumann-Wilke M, Bauer K, Schovsbo NH, Stiller M (2012) P-wave traveltime tomography for a seismic characterization of black shales at shallow depth on Bornholm Denmark. Geophysics 77(5):EN53–EN60. https://doi.org/10.1190/geo2011-0326.1

    Article  Google Scholar 

  • Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18:1–43

    Google Scholar 

  • Bergamo P, Dashwood B, Uhlemann S, Swift R, Chambers JE, Gunn DA, Donohue S (2016) Time-lapse monitoring of fluid-induced geophysical property variations within an unstable earthwork using p-wave refraction. Geophysics 81(4):EN17–EN27. https://doi.org/10.1190/geo2015-0276.1

    Article  Google Scholar 

  • Bianco MJ, Gerstoft P, Olsen KB, Lin FC (2019) High-resolution seismic tomography of long beach, ca using machine learning. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Billette F, Lambare G (1998) Velocity macro-model estimation from seismic reflection data by stereotomography. Geophys J Int 135(2):671–690

    Article  Google Scholar 

  • Bodet L, Jacob X, Tournat V, Mourgues R, Gusev V (2010) Elasticity profile of an unconsolidated granular medium inferred from guided waves: Toward acoustic monitoring of analogue models. Tectonophysics 496:99–104

    Article  Google Scholar 

  • Bodet L, Dhemaied A, Martin R, Mourgues R, Rejiba F, Tournat V (2014) Small-scale physical modeling of seismic-wave propagation using unconsolidated granular media. Geophysics 79(6):T323–T339

    Article  Google Scholar 

  • Bording RP, Gersztenkorn A, Lines LR, Scales JA, Treitel S (1987) Applications of seismic travel-time tomography. Geophys J Int 90(2):285–303

    Article  Google Scholar 

  • Cao D, Liao W (2015) A computational method for full waveform inversion of crosswell seismic data using automatic differentiation. Comput Phys Commun 188:47–58

    Article  Google Scholar 

  • Carriere S, Chalikakis K, Danquigny C, Davi H, Mazzilli N, Ollivier C, Emblanch C (2016) The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach. Hydrogeol J 24(7):1905–1918. https://doi.org/10.1007/s10040-016-1425-8

    Article  Google Scholar 

  • Chai C, Maceira M, Santos-Villalobos HJ, Venkatakrishnan SV, Schoenball M, Zhu W, Beroza GC, Thurber C, Team EC (2020) Using a deep neural network and transfer learning to bridge scales for seismic phase picking. Geophys Res Lett 47(16):e2020GL088651

    Article  Google Scholar 

  • Dai T, Xia J, Ning L, Chaoqiang X, Liu Y, Xing H (2021) Deep learning for extracting dispersion curves. Surv Geophys 42:1–27. https://doi.org/10.1007/s10712-020-09615-3

    Article  Google Scholar 

  • Dangeard M (2019) Développement d’une approche “ time-lapse ” des méthodes sismiques pour l’hydrogéophysique et la compréhension de la dynamique des hydrosystèmes. Theses, Sorbonne Université, https://tel.archives-ouvertes.fr/tel-02931838

  • Dangeard M, Bodet L, Pasquet S, Thiesson J, Guérin R, Jougnot D, Longuevergne L (2018) Estimating picking errors in near-surface seismic data to enable their time-lapse interpretation of hydrosystems. Near Surface Geophys 16(6):613–625

    Article  Google Scholar 

  • Dangeard M, Riviére A, Bodet L, Schneider S, Guérin R, Jougnot D, Maineult A (2021) River corridor model constrained by time-lapse seismic acquisition. Water Resour Res 57(10):e2020WR028911

    Article  Google Scholar 

  • Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V et al (1997) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161

    Google Scholar 

  • Duarte M, Watanabe RN (2021). Notes on scientific computing for biomechanics and motor control. https://doi.org/10.5281/zenodo.4599319

  • Earp S, Curtis A, Zhang X, Hansteen F (2020) Probabilistic neural network tomography across grane field (north sea) from surface wave dispersion data. Geophys J Int 223(3):1741–1757

    Article  Google Scholar 

  • Fichtner A, Hp Bunge, Igel H (2006) The adjoint method in seismology: I. theory. Phys Earth Planet Inter 157:86–104. https://doi.org/10.1016/j.pepi.2006.03.016

    Article  Google Scholar 

  • Fomel S, Luo S, Zhao H (2009) Fast sweeping method for the factored eikonal equation. J Comput Phys 228(17):6440–6455

    Article  Google Scholar 

  • Hobro JWD, Singh SC, Minshull TA (2003) Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophys J Int 152(1):79–93

    Article  Google Scholar 

  • Hole JA (1992) Nonlinear high-resolution three-dimensional seismic travel time tomography. J Geophys Res: Solid Earth 97(B5):6553–6562

    Article  Google Scholar 

  • Huang G, Luo S, Ari T, Li H, Nobes DC (2019) First-arrival tomography with fast sweeping method solving the factored eikonal equation. Explor Geophys 50(2):144–158

    Article  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101. https://doi.org/10.1214/aoms/1177703732

    Article  Google Scholar 

  • Jones IF (2010) Tutorial: velocity estimation via ray-based tomography. First Break 28(2)

  • Komatitsch D (1997) Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media). PhD thesis, Institut de Physique du Globe, Paris, France, 187 pages

  • Komatitsch D, Tromp J (1999) Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys J Int 139(3):806–822. https://doi.org/10.1046/j.1365-246x.1999.00967.x

    Article  Google Scholar 

  • Komatitsch D, Vilotte JP (1998) The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismological Soc Am 88(2):368–392

    Article  Google Scholar 

  • Komatitsch D, Vilotte JP, Cristini P, Labarta J, Le Goff N, Le Loher P, Liu Q, Martin R, Matzen R, Morency C, Peter D, Tape C, Tromp J, Xie Z (2012) Specfem2d v7.0.0 [software]

  • Kong Q, Trugman DT, Ross ZE, Bianco MJ, Meade BJ, Gerstoft P (2019) Machine learning in seismology: turning data into insights. Seismol Res Lett 90(1):3–14

    Article  Google Scholar 

  • Kosloff D, Sherwood J, Koren Z, Machet E, Falkovitz Y (1996) Velocity and interface depth determination by tomography of depth migrated gathers. Geophysics 61(5):1511–1523. https://doi.org/10.1190/1.1444076

    Article  Google Scholar 

  • Lecomte I, Lubrano-Lavadera P, Anell I, Buckley S, Schmid DW, Heeremans M (2015) Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently. Interpretation 3:SAC71–SAC89. https://doi.org/10.1190/INT-2015-0061.1

    Article  Google Scholar 

  • Li S, Liu B, Ren Y, Chen Y, Yang S, Wang Y, Jiang P (2020) Deep-learning inversion of seismic data. IEEE Trans Geosci Remote Sens 58(3):2135–2149. https://doi.org/10.1109/TGRS.2019.2953473

    Article  Google Scholar 

  • Liu Q, Tromp J (2006) Finite-frequency kernels based on adjoint methods 96(6):2383–2397. https://doi.org/10.1785/0120060041

  • Martin R, Komatitsch D, Gedney SD (2008) A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation. Comput Model Eng Sci 37(3):274–304

    Google Scholar 

  • Mousavi SM, Ellsworth WL, Zhu W, Chuang LY, Beroza GC (2020) Earthquake transformer: an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat Commun 11(1):1–12

    Article  Google Scholar 

  • Pasquet S, Bodet L, Dhemaied A, Mouhri A, Vitale Q, Rejiba F, Flipo N, Guérin R (2015) Detecting different water table levels in a shallow aquifer with combined p-, surface and sh-wave surveys: insights from vp/vs or poisson’s ratios. J Appl Geophys 113:38–50

    Article  Google Scholar 

  • Pasquet S, Bodet L, Longuevergne L, Dhemaied A, Camerlynck C, Rejiba F, Guérin R (2015) 2d characterization of near-surface: surface-wave dispersion inversion versus refraction tomography. Near Surf Geophys 13(4):315–332

    Article  Google Scholar 

  • Pasquet S, Bodet L, Bergamo P, Guérin R, Martin R, Mourgues R, Tournat V (2016) Small-scale seismic monitoring of varying water levels in granular media. Vadose Zone J. https://doi.org/10.2136/vzj2015.11.0142

    Article  Google Scholar 

  • Peter D, Komatitsch D, Luo Y, Martin R, Le Goff N, Casarotti E, Le Loher P, Magnoni F, Liu Q, Blitz C, Nissen-Meyer T, Basini P, Tromp J (2011) Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys J Int 186(2):721–739. https://doi.org/10.1111/j.1365-246X.2011.05044.x

    Article  Google Scholar 

  • Plessix RE (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167(2):495–503

    Article  Google Scholar 

  • Podvin P, Lecomte I (1991) Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys J Int 105(1):271–284

    Article  Google Scholar 

  • Qian J, Zhang YT, Zhao HK (2007) Fast sweeping methods for eikonal equations on triangular meshes. SIAM J Numer Anal 45:83–107. https://doi.org/10.1137/050627083

    Article  Google Scholar 

  • Rawlinson N, Sambridge M et al (2003) Seismic traveltime tomography of the crust and lithosphere. Adv Geophys 46:81–199

    Article  Google Scholar 

  • Richardson A (2018) Seismic full-waveform inversion using deep learning tools and techniques. arXiv preprint arXiv:1801.07232

  • Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241

  • Sen PK (1968) Estimates of the regression coefficient based on kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  • Talwani M, Kessinger W (2003) Exploration geophysics. In: Meyers RA (ed) Encyclopedia of Physical Science and Technology (Third Edition), third, edition. Academic Press, New York, pp 709–726

    Chapter  Google Scholar 

  • Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49:1259–1266

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier Science Publishers, Amsterdam, Netherlands

    Google Scholar 

  • Tarantola A (1988) Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation 128:365–399

  • Tarantola A, Valette B (1982) Generalized nonlinear inverse problems solved using the least squares criterion. Rev Geophys Space Phys 20:219–232

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Indag Math 12(85):173

    Google Scholar 

  • Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys J Int 160(1):195–216. https://doi.org/10.1111/j.1365-246X.2004.02453.x

    Article  Google Scholar 

  • Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint methods in seismology. Commun Comput Phys 3(1):1–32

    Google Scholar 

  • Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(9):WCC127–WCC152

    Google Scholar 

  • Virieux J, Asnaashari A, Brossier R, Métivier L, Ribodetti A, Zhou W (2017) An introduction to full waveform inversion. In: Encyclopedia of exploration geophysics, Society of Exploration Geophysicists, pp R1–R40

  • Wang J, Xiao Z, Liu C, Zhao D, Yao Z (2019) Deep learning for picking seismic arrival times. J Geophys Res: Solid Earth 124(7):6612–6624

    Article  Google Scholar 

  • Xu S, Wang D, Chen F, Zhang Y, Lambare G (2012) Full waveform inversion for reflected seismic data. In: 74th EAGE Conference and exhibition incorporating EUROPEC 2012, European Association of Geoscientists & Engineers, pp cp–293

  • Yang F, Ma J (2019) Deep-learning inversion: a next-generation seismic velocity model building method. Geophysics 84(4):R583–R599. https://doi.org/10.1190/geo2018-0249.1

    Article  Google Scholar 

  • Yoo J, Borselen R, Mubarak M, Tsingas C (2019) Automated first break picking method using a random sample consensus (ransac). In: 81st EAGE Conference and Exhibition 2019, European Association of Geoscientists & Engineers, vol 2019, pp 1–5

  • Yu S, Ma J (2021) Deep learning for geophysics: current and future trends. Rev Geophys 59(3):e20210RG00742

    Article  Google Scholar 

  • Zelt CA, Barton PJ (1998) Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the faeroe basin. J Geophys Res: Solid Earth 103(B4):7187–7210

    Article  Google Scholar 

  • Zheng Y, Zhang Q, Yusifov A, Shi Y (2019) Applications of supervised deep learning for seismic interpretation and inversion. Lead Edge 38(7):526–533. https://doi.org/10.1190/tle38070526.1

    Article  Google Scholar 

  • Zhu H, Luo Y, Nissen-Meyer T, Morency C, Tromp J (2009) Elastic imaging and time-lapse migration based on adjoint methods. Geophysics 74:WCA167–WCA177

    Article  Google Scholar 

  • Zhu W, Beroza GC (2018) PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216(1):261–273

    Google Scholar 

  • Zhu W, Xu K, Darve E, Beroza GC (2021) A general approach to seismic inversion with automatic differentiation. Comput Geosci 151:104751

    Article  Google Scholar 

Download references

Acknowledgements

Surface seismic data acquisitions used in this study were supported by the equipex CRITEX equipment granted project No ANR-11-EQPX-0011 and performed by Marine Dangeard (now at SNCF-Réseau, DGII/DTR/GC/VA/PGRN, La Plaine Saint-Denis, France) and Ludovic Bodet (UMR 7619 METIS, Sorbonne Université, CNRS, EPHE, France) with the help of K. Chalikakis (UMR EMMAH, Avignon Université, France), whose work we very much want to acknowledge. This work is part of the MADASSY project funded by the RTRA-STAE via the ENV’IA Network (Toulouse/France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Martin.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, N.N.T., Martin, R., Oberlin, T. et al. Near-Surface Seismic Arrival Time Picking with Transfer and Semi-Supervised Learning. Surv Geophys 44, 1837–1861 (2023). https://doi.org/10.1007/s10712-023-09783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09783-y

Keywords

Navigation