Skip to main content

Advertisement

Log in

Convolutional Neural Network-Assisted Least-Squares Migration

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Least-squares migration (LSM) is a data-fitting imaging approach seeking the seismic reflectivity image of the most accurate amplitude and optimal resolution. However, the high computational cost of LSM has hindered its broad application. In this study, we combine a convolutional neural network (CNN) with LSM to significantly improve the computational efficiency while retaining the imaging quality. Taking CNN as a “projector,” we treat LSM as the “projection” from the ordinarily migrated images to the least-squares updated images. We conduct this CNN-assisted LSM in the shot gather domain using a Gaussian beam migration and the corresponding LSM. The training data for CNN consist of 10–15% of all shot gathers, with the Gaussian beam migrated shot gathers as the input and the LSM shot gathers as the target. After the training, the processing time for the remaining shot gathers took several minutes for 2D cases. The results from testing with the Sigsbee 2B synthetic dataset and a field marine dataset indicate the CNN-assisted LSM saved 80–90% of the computation time of the full LSM and achieved significantly higher image fidelity than that of the ordinary migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aki K, Richards PG (2002), Quantitative seismology. Lamont-doherty earth observatory of columbia university, Palisades

  • Aoki N, Schuster GT (2009) Fast least-squares migration with a deblurring filter. Geophysics 74(6):83–93

    Article  Google Scholar 

  • Bleistein N (1987) On the imaging of reflectors in the earth. Geophysics 52(7):931–942

    Article  Google Scholar 

  • Červený V, Pšenčík I (2010) Gaussian beams in inhomogeneous anisotropic layered structures. Geophys J Int 180(2):798–812

    Article  Google Scholar 

  • Červený V, Popov MM, Pšenčík I (1982) Computation of wave fields in inhomogeneous media—Gaussian beam approach. Geophys J Int 70(1):109–128

    Article  Google Scholar 

  • Claerbout JF, Abma R (1992) Earth soundings analysis: processing versus inversion, Blackwell Scientific Publications, London

  • Claerbout JF (1985) Imaging the earth's interior. Blackwell scientific publications, Oxford

  • Dai W, Schuster GT (2013) Plane-wave least-squares reverse-time migration. Geophysics 78(4):S165–S177

    Article  Google Scholar 

  • Gao K, Huang L, Zheng Y, Lin R, Hu H, Cladohous T (2022) Automatic fault detection on seismic images using a multiscale attention convolutional neural network. Geophysics 87(1):N13–N29

    Article  Google Scholar 

  • Geng ZC, Zhao ZY, Shi YZ, Wu XM, Fomel S, Sen M (2022) Deep learning for velocity model building with common-image gather volumes. Geophys J Int 228(2):1054–1070. https://doi.org/10.1093/gji/ggab385

    Article  Google Scholar 

  • Geng ZC, Wu XM, Shi YZ, Fomel S (2020) Deep learning for relative geologic time and seismic horizons. Geophysics 85(4):87–100. https://doi.org/10.1190/Geo2019-0252.1

    Article  Google Scholar 

  • Gray SH (2005) Gaussian beam migration of common-shot records. Geophysics 70(4):S71–S77

    Article  Google Scholar 

  • Gray SH, Bleistein N (2009) True-amplitude Gaussian-beam migration. Geophysics 74(2):S11–S23

    Article  Google Scholar 

  • Guitton A (2004) Amplitude and kinematic corrections of migrated images for nonunitary imaging operators. Geophysics 69(4):1017–1024

    Article  Google Scholar 

  • Guo R, Yao HM, Li MK, Ng MKP, Jiang LJ, Abubakar A (2021) Joint inversion of audio-magnetotelluric and seismic travel time data with deep learning constraint. IEEE Trans Geosci Remote Sens 59(9):7982–7995. https://doi.org/10.1109/Tgrs.2020.3032743

    Article  Google Scholar 

  • Hale D (1992) Migration by the Kirchhoff, slant stack, and Gaussian beam methods Rep., Colorado School of Mines, CO (United States). Center for Wave Phenomena, Golden.

  • Hanitzsch C (1997) Comparison of weight in prestack amplitude-preserving Kirchhoff depth migration. Geophysics 62:1812–1816

    Article  Google Scholar 

  • He K, Zhang X, Ren S and Sun J (2016), Deep residual learning for image recognition, paper presented at Proceedings of the IEEE conference on computer vision and pattern recognition.

  • Hill NR (1990) Gaussian beam migration. Geophysics 55(11):1416–1428

    Article  Google Scholar 

  • Hill NR (2001) Prestack Gaussian-beam depth migration. Geophysics 66(4):1240–1250

    Article  Google Scholar 

  • Hu JX, Schuster GT, Valasek PA (2001) Poststack migration deconvolution. Geophysics 66(3):939–952

    Article  Google Scholar 

  • Hu H, Liu YK, Zheng YC, Liu XJ, Lu HY (2016) Least-squares Gaussian beam migration. Geophysics 81(3):S87–S100

    Article  Google Scholar 

  • Jin S, Madariaga R, Virieux J, Lambaré G (1992) Two-dimensional asymptotic iterative elastic inversion. Geophys J Int 108:575–588

    Article  Google Scholar 

  • Kaur H, Pham N and Fomel S (2019) Estimating the inverse Hessian for amplitude correction of migrated images using deep learning, paper presented at SEG International exposition and annual meeting, OnePetro.

  • Kaur H, Pham N, Fomel S (2020) Improving the resolution of migrated images by approximating the inverse Hessian using deep learning. Geophysics 85(4):Wa173–Wa183. https://doi.org/10.1190/Geo2019-0315.1

    Article  Google Scholar 

  • Kaur H, Sun J, Aharchaou M, Baumstein A, Fomel S (2022) Deep learning framework for true amplitude imaging: effect of conditioners and initial models. Geophys Prospect. https://doi.org/10.1111/1365-2478.13234

    Article  Google Scholar 

  • Kaur H (2022) Improving accuracy and efficiency of seismic data analysis using deep learning (Doctoreal dissertation).

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inform Process Syst 25:84–90

    Google Scholar 

  • Kühl H, Sacchi MD (2003) Least-squares wave-equation migration for AVP/AVA inversion. Geophysics 68(1):262–273

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Li SC, Liu B, Ren YX, Chen YK, Yang SL, Wang YH, Jiang P (2020) Deep-learning inversion of seismic data. IEEE Trans Geosci Remote Sens 58(3):2135–2149. https://doi.org/10.1109/Tgrs.2019.2953473

    Article  Google Scholar 

  • Li Y, Wang Y, Wu N (2021) Noise suppression method based on multi-scale dilated convolution network in desert seismic data. Comput Geosci 156:104910

    Article  Google Scholar 

  • Liu QC, Peter D (2018) One-step data-domain least-squares reverse time migration. Geophysics 83(4):R361–R368

    Article  Google Scholar 

  • Liu D, Wang W, Wang X, Wang C, Pei J, Chen W (2019) Poststack seismic data denoising based on 3-D convolutional neural network. IEEE Trans Geosci Remote Sens 58(3):1598–1629

    Article  Google Scholar 

  • Liu Z, Chen Y, Schuster G (2020) Deep convolutional neural network and sparse least-squares migration. Geophysics 85(4):WA241–WA253

    Article  Google Scholar 

  • McCann MT, Jin KH, Unser M (2017) Convolutional neural networks for inverse problems in imaging A review. IEEE Signal Proc Mag 34(6):85–95. https://doi.org/10.1109/Msp.2017.2739299

    Article  Google Scholar 

  • Nemeth T, Wu C, Schuster GT (1999) Least-squares migration of incomplete reflection data. Geophysics 64(1):208–221

    Article  Google Scholar 

  • Popov MM, Semtchenok NM, Popov PM, Verdel AR (2010) Depth migration by the Gaussian beam summation method. Geophysics 75(2):S81–S93

    Article  Google Scholar 

  • Ronneberger O, Fischer P and Brox T (2015), U-net: convolutional networks for biomedical image segmentation, paper presented at international conference on medical image computing and computer-assisted intervention. Springer, Munich.

  • Schleicher J, Tygel M, Hubral P (1993) 3-D true-amplitude finite-offset migration. Geophysics 58:1112–1126

    Article  Google Scholar 

  • Schuster GT (1993) Least-squares cross-well migration in SEG technical program expanded abstracts 1993, edited, Society of Exploration Geophysicists. Beijing, pp. 110–113 https://doi.org/10.1190/1.1822308

  • Shi YZ, Wu XM, Fomel S (2019) SaltSeg: automatic 3D salt segmentation using a deep convolutional neural network. Interpretation-J Sub 7(3):Se113–Se122. https://doi.org/10.1190/Int-2018-0235.1

    Article  Google Scholar 

  • Shi YZ, Wu XM, Fomel S (2020) Waveform embedding: Automatic horizon picking with unsupervised deep learning. Geophysics 85(4):Wa67–Wa76. https://doi.org/10.1190/Geo2019-0438.1

    Article  Google Scholar 

  • Tang SH, Ding YS, Zhou HW, Zhou H (2020) Reconstruction of sparsely sampled seismic data via residual U-net. IEEE Geosci Remote Sens Lett 19:3035835. https://doi.org/10.1109/Lgrs.2020.3035835

    Article  Google Scholar 

  • Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51(10):1893–1903

    Article  Google Scholar 

  • Wang Y, Wang B, Tu N, Geng J (2020) Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder. Geophysics 85(2):V119–V130

    Article  Google Scholar 

  • Wei Z, Hu H, Zhou H-W, Lau A (2019) Characterizing rock facies using machine learning algorithm based on a convolutional neural network and data padding strategy. Pure Appl Geophys 176(8):3593–3605

    Article  Google Scholar 

  • Wu H, Zhang B, Li FY, Liu NH (2019a) Semiautomatic first-arrival picking of microseismic events by using the pixel-wise convolutional image segmentation method. Geophysics 84(3):V143–V155. https://doi.org/10.1190/Geo2018-0389.1

    Article  Google Scholar 

  • Wu H, Zhang B, Lin TF, Cao DP, Lou YH (2019b) Semiautomated seismic horizon interpretation using the encoder-decoder convolutional neural network. Geophysics 84(6):B403–B417. https://doi.org/10.1190/Geo2018-0672.1

    Article  Google Scholar 

  • Wu H, Zhang B, Lin TF, Li FY, Liu NH (2019c) White noise attenuation of seismic trace by integrating variational mode decomposition with convolutional neural network. Geophysics 84(5):V307–V317. https://doi.org/10.1190/Geo2018-0635.1

    Article  Google Scholar 

  • Wu XM, Liang LM, Shi YZ, Fomel S (2019) FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 84(3):Im35–Im45. https://doi.org/10.1190/Geo2018-0646.1

    Article  Google Scholar 

  • Xia K, Hilterman F, Hu H (2018) Unsupervised machine learning algorithm for detecting and outlining surface waves on seismic shot gathers. J Appl Geophys 157:73–86

    Article  Google Scholar 

  • Xu B, Wang N, Chen T and Li M (2015), Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853.

  • Xu P, Wang H, Guo S and Wu C (2020) RTM deblurring with flexible WKBJ PSFs, paper presented at SEG International Exposition and Annual Meeting. Oklahoma, OnePetro.

  • Yang FS, Ma JW (2019) Deep-learning inversion: A next-generation seismic velocity model building method. Geophysics 84(4):R585-584. https://doi.org/10.1190/Geo2018-0249.1

    Article  Google Scholar 

  • Yuan P, Wang S, Hu W, Nadukandi P, Botero GO, Wu X, Van Nguyen H, Chen J (2022) Self-supervised learning for efficient antialiasing seismic data interpolation. IEEE Trans Geosci Remote Sens 60:1–19

    Google Scholar 

  • Zhang Y, Ratcliffe A, Roberts G, Duan L (2014) Amplitude-preserving reverse time migration: from reflectivity to velocity and impedance inversion. Geophysics 79(6):S271–S283

    Article  Google Scholar 

  • Zhang HR, Yang P, Liu Y, Luo YN, Xu JY (2021a) Deep learning-based low-frequency extrapolation and impedance inversion of seismic data. IEEE Geosci Remote Sens Lett 19:3123955. https://doi.org/10.1109/Lgrs.2021.3123955

    Article  Google Scholar 

  • Zhang W, Gao JH, Jiang XD, Sun WB (2021b) Consistent least-squares reverse time migration using convolutional neural networks. IEEE Trans Geosci Remote Sens 60:3116455. https://doi.org/10.1109/Tgrs.2021.3116455

    Article  Google Scholar 

  • Zhong Z, Sun AY, Wu XM (2020) Inversion of time-lapse seismic reservoir monitoring data using cycleGAN: a deep learning-based approach for estimating dynamic reservoir property changes. J Geophys Res Sol Ea 125(3):18408. https://doi.org/10.1029/2019JB018408

    Article  Google Scholar 

  • Zhou H (2014) Practical seismic data analysis. Cambridge University Press

    Book  Google Scholar 

  • Zhou H, Zou Z, Li Z (2021) Detecting artifacts in seismic profiles. Rev Geophys Planet Phys Chin 52(1):45–53. https://doi.org/10.19975/j.dqyxx.2020-003

    Article  Google Scholar 

Download references

Acknowledgements

Part of this study is supported by NSF Grant (OCE-1832197). We benefit from the discussions with Dr. August Lau and Dr. Alfonso Gonzalez. We appreciate the insightful comments from the three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Wei Zhou.

Ethics declarations

Conflict of interest

We don’t see any conflict of interest involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Hu, H. & Zhou, HW. Convolutional Neural Network-Assisted Least-Squares Migration. Surv Geophys 44, 1107–1124 (2023). https://doi.org/10.1007/s10712-023-09777-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-023-09777-w

Keywords

Navigation