Curie Point Depth and Thermal State of the Lithosphere Beneath the Northeastern Flank of the Baikal Rift Zone and Adjacent Areas

Abstract

We consider the thermal state of the lithosphere in the poorly studied region, including the NE flank of the Baikal rift zone and its adjacent areas (110°–122° E, 50°–63° N). For this purpose, spectral analysis of the EMAG2v3 lithospheric geomagnetic field model using the centroid method is performed, average temperature–depth geotherms are calculated from surface heat flow measurements, and the depth to the bottom of the seismogenic layer is estimated from the data on hypocentral depths of regional earthquakes which occurred in 2000–2018. The distribution of the bottom depths of the lithospheric magnetic sources, regarded as the Curie point depths (CPDs) in this study, which are obtained, demonstrates a southward decrease of the CPD values. The shallowest (22.5 km) and deepest (48.5 km) depths are observed in Transbaikalia and at the Siberian Platform, respectively, while the NE flank of the Baikal rift zone is characterized by intermediate CPDs varying from 32 to 44 km. This tendency is clearly seen in the average CPD estimates which are 33, 37, and 40 km in Transbaikalia, Baikal rift, and Siberian Platform, respectively. In Transbaikalia, the average CPDs, estimated from geomagnetic and geothermal data, are close to each other in contrast to the other structures, where the obtained inconsistency could result from a small number and uneven distribution of surface heat flow measurements, their distortion by permafrost and convection, or assumptions about the radiogenic heat production near the surface. The centroid of the magnetic sources is approximately equal or slightly shallower than the seismicity cutoff depth at the NE flank of the Baikal rift. For the major part of the considered territory, the same relation between the CPD and Moho depths is observed, except for two areas at the Siberian Platform and the Vitim volcanic field, where the uppermost mantle is magnetic. Intermediate relative to the Siberian Platform and Transbaikalia, values of the CPD, obtained at the NE flank of the Baikal rift, indicate no significant heating of the lithosphere; they do not agree with a hypothesis of active rifting but provide evidence for its passive character.

Article Highlights

  • The thermal state of the lithosphere under the NE flank of the Baikal rift is studied using a variety of data and methods.

  • Southward lithospheric heating is revealed from geomagnetic and geothermal data.

  • The obtained results provide evidence for the passive character of the lithospheric extension in the Baikal rift.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The used EMAG2v3 model of the lithospheric geomagnetic field is freely available at https://www.ngdc.noaa.gov/geomag/emag2.html. The used Global Heat Flow Database of the International Heat Flow Commission is freely available at https://ihfc-iugg.org/products/global-heat-flow-database/data. The catalog of regional earthquakes will be made available on request.

Code Availability

Not applicable.

References

  1. Aboud E, Alotaibi AM, Saud R (2016) Relationship between Curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia. J Asian Earth Sci 128:42–53. https://doi.org/10.1016/j.jseaes.2016.07.025

    Article  Google Scholar 

  2. Afonso JC, Fernàndez M, Ranalli G, Griffin WL, Connolly JAD (2008) Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: methodology and applications. Geochem Geophys Geosyst 9:Q05008. https://doi.org/10.1029/2007GC001834

    Article  Google Scholar 

  3. Amante C, Eakins BW (2009) ETOPO1. 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Tech. Mem. NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M

  4. Arnaiz-Rodríguez MS, Orihuela N (2013) Curie point depth in Venezuela and the Eastern Caribbean. Tectonophysics 590:38–51. https://doi.org/10.1016/j.tecto.2013.01.004

    Article  Google Scholar 

  5. Artemieva IM (2006) Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416:245–277. https://doi.org/10.1016/j.tecto.2005.11.022

    Article  Google Scholar 

  6. Artemieva I, Mooney W (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res Solid Earth 106:16387–16414

    Article  Google Scholar 

  7. Artemieva IM, Thybo H, Jakobsen K, Sørensen NK, Nielsen LSK (2017) Heat production in granitic rocks: global analysis based on a new data compilation GRANITE2017. Earth Sci Rev 172:1–26. https://doi.org/10.1016/j.earscirev.2017.07.003

    Article  Google Scholar 

  8. Bansal AR, Gabriel G, Dimri VP, Krawczyk CM (2011) Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76(3):L11–L22. https://doi.org/10.1190/1.3560017

    Article  Google Scholar 

  9. Bansal AR, Anand SP, Rajaram M, Rao VK, Dimri VP (2013) Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources. Tectonophysics 603:155–161. https://doi.org/10.1016/j.tecto.2013.05.024

    Article  Google Scholar 

  10. Belichenko VG, Sklyarov EV, Dobretsov NL, Tomurtogoo O (1994) Geodynamic map of Paleo-Asian Ocean. The eastern segment. Russ Geol Geophys 7–8:29–40 (Translated from Belichenko VG, Sklyarov EV, Dobretsov NL, Tomurtogoo O (1994) Geologiya i Geofizika 7–8:29–40)

    Google Scholar 

  11. Bhattacharyya BK, Leu L-K (1975a) Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics 40(6):993–1013

    Article  Google Scholar 

  12. Bhattacharyya BK, Leu L-K (1975b) Analysis of magnetic anomalies over Yellowstone national park: Mapping of Curie point isothermal surface for geothermal reconnaissance. J Geophys Res Solid Earth 80(32):4461–4465

    Article  Google Scholar 

  13. Bilim F, Kosaroglu S, Aydemir A, Buyuksarac A (2017) Thermal investigation in the Cappadocia region central Anatolia-Turkey, analyzing Curie point depth, geothermal gradient, and heat-flow maps from aeromagnetic data. Pure Appl Geophys 174:4445–4458. https://doi.org/10.1007/s00024-017-1666-z

    Article  Google Scholar 

  14. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Bouligand C, Glen JMG, Blakely J (2009) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J Geophys Res Solid Earth 114:B11104. https://doi.org/10.1029/2009JB006494

    Article  Google Scholar 

  16. Calais E, Vergnolle M, San’kov V, Lukhnev A, Miroshnichenko A, Amarjargal S, Déverchère J (2003) GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): implications for current kinematics of Asia. J Geophys Res Solid Earth 108(B10):2501. https://doi.org/10.1029/2002JB002373

    Article  Google Scholar 

  17. Cammarano F, Guerri M (2017) Global thermal models of the lithosphere. Geophys J Int 210:56–72. https://doi.org/10.1093/gji/ggx144

    Article  Google Scholar 

  18. Correa RT, Vidotti RM, Oksum E (2016) Curie surface of Borborema Province, Brazil. Tectonophysics 679:73–87. https://doi.org/10.1016/j.tecto.2016.04.037

    Article  Google Scholar 

  19. Delvaux D, Moeys R, Stapel G, Petit C, Levi K, Miroshnichenko A, Ruzhich V, San’kov V (1997) Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic Rifting Tectonophys 282:1–38

    Article  Google Scholar 

  20. Déverchère J, Houdry F, Diament M, Solonenko NV, Solonenko AV (1991) Evidence for a seismogenic upper mantle and lower crust in the Baikal rift. Geophys Res Lett 18:1099–1102

    Article  Google Scholar 

  21. Déverchère J, Petit C, Gileva N, Radziminovitch N, Melnikova V, San’kov V (2001) Depth distribution of earthquakes in the Baikal Rift System and its implications for the rheology of the lithosphere. Geophys J Int 146:713–730

    Article  Google Scholar 

  22. Dorofeeva RP (1990) Heat production of rocks and radiogenic heat of Pribaikalye and Transbaikalia. Izv Akad Nauk SSSR Fizika Zemli 1:82–90 (Translated from Dorofeeva RP (1990) Izv Akad Nauk SSSR, Fizika Zemli 1:82–90)

    Google Scholar 

  23. Dorofeeva RP, Lysak SV (1989) Geothermal profiles of the lithosphere in Central Asia. Tectonophysics 164:165–173

    Article  Google Scholar 

  24. Doser D, Yarwood D (1994) Deep crustal earthquakes associated with continental rifts. Tectonophysics 229:123–131

    Article  Google Scholar 

  25. Duchkov AD, Sokolova LS (1974) Geothermal studies in Siberia. Nauka, USSR, Novosibirsk ((in Russian))

    Google Scholar 

  26. Duchkov AD, Ladynin AV, Puzankov YuM (1994) Temperature, permafrost and radiogenic heat production in the Earth’s crust of Northern Asia. SB RAS, Novosibirsk ((in Russian))

    Google Scholar 

  27. Duchkov AD, Lysak SV, Golubev VA, Dorofeeva RP, Sokolova LS (1999) Heat flow and geothermal field of the Baikal region. Russ Geol Geophys 40(3):287–303 (Translated from Duchkov AD, Lysak SV, Golubev VA, Dorofeeva RP, Sokolova LS (1999) Geologiya i Geofizika 40(3):287–303)

    Google Scholar 

  28. Emmerson B, Jackson J, McKenzie D, Priestley K (2006) Seismicity, structure and rheology of the lithosphere in the Lake Baikal region. Geophys J Int 167:1233–1272. https://doi.org/10.1111/j.1365-246X.2006.03075.x

    Article  Google Scholar 

  29. Ershova VB, Prokopiev AV, Khudoley AK (2020) Hidden Middle Devonian magmatism of north-eastern Siberia: age constraints from detrital zircon U-Pb data. Minerals 10(10):874. https://doi.org/10.3390/min10100874

    Article  Google Scholar 

  30. Ferré EC, Friedman SA, Martín-Hernández F, Feinberg JM, Till JL, Ionov DA, Conder JA (2014) Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics 624–625:3–14. https://doi.org/10.1016/j.tecto.2014.01.004

    Article  Google Scholar 

  31. Finn CA, Ravat D (2004) Magnetic depth estimates and their potential for constraining crustal composition and heat flow in Antarctica. In: AGU Fall Meeting, T11A-1236.

  32. Fowler CMR (2005) The solid earth: an introduction to global geophysics. Cambridge Univ Press, Cambridge

    Google Scholar 

  33. Fullea J, Afonso JC, Connolly JAD, Fernàndez M, García-Castellanos D, Zeyen H (2009) LitMod3D: An interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochem Geophys Geosyst 10:Q08019. https://doi.org/10.1029/2009GC002391

    Article  Google Scholar 

  34. Gao SS, Liu KH, Chen C (2004) Significant crustal thinning beneath the Baikal rift zone: new constraints from receiver function analysis. Geophys Res Lett 31:L20610. https://doi.org/10.1029/2004GL020813

    Article  Google Scholar 

  35. Gileva NA, Melnikova VI, Radziminovich NA, Déverchère J (2000) Localization of earthquakes and mean characteristics of the crust in some areas of the Baikal region. Russ Geol Geophys 41(5):629–636 (Translated from Gileva NA, Mel’nikova VI, Radziminovich NA, Déverchère J (2000) Geologiya i Geofizika 41(5):629–636)

    Google Scholar 

  36. Goes S, Hasterok D, Schutt DK, Klöcking M (2020) Continental lithospheric temperatures: a review. Phys Earth Planet Inter 306:106509. https://doi.org/10.1016/j.pepi.2020.106509

    Article  Google Scholar 

  37. Golenetskii SI (1990) Problem of the study of Baikal rift seismicity. In: Geodynamics of intracontinental mountainous regions. Nauka, Novosibirsk, USSR, pp 228–235 (in Russian)

  38. Golubev VA (2000) Conductive and convective heat flow in the bottom of Lake Baikal and in the surrounding mountains. Bull Centre Rech Explor Prod Elf Aquitaine 22(2):323–340

    Google Scholar 

  39. Golubev VA (2007) Conductive and convective heat output in the Baikal rift zone. Academic Publishing House Geo, Novosibirsk ((in Russian))

    Google Scholar 

  40. Grinkevich GI (1955) Logarithmic curves ΔZ. Papers on methods of survey geophysics. SGI, Moscow, USSR (in Russian)

  41. Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70. https://doi.org/10.1016/j.epsl.2011.04.034

    Article  Google Scholar 

  42. Hsieh H-H, Chen C-H, Lin P-Y, Yen H-Y (2014) Curie point depth from spectral analysis of magnetic data in Taiwan. J Asian Earth Sci 90:26–33. https://doi.org/10.1016/j.jseaes.2014.04.007

    Article  Google Scholar 

  43. Hussein M, Mickus K, Serpa LF (2013) Curie point depth estimates from aeromagnetic data from Death Valley and surrounding regions, California. Pure Appl Geophys 170:617–632. https://doi.org/10.1007/s00024-012-0557-6

    Article  Google Scholar 

  44. Hutchinson DR, Golmshtok AJ, Zonenshain LP, Moore TC, Scholz CA, Klitgord KD (1992) Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 20(7):589–592. https://doi.org/10.1130/0091-7613(1992)020%3c0589:DATFOT%3e2.3.CO;2

    Article  Google Scholar 

  45. Idarraga-Garcia J, Vargas CA (2018) Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior. Geodesy Geodyn 9:93–107. https://doi.org/10.1016/j.geog.2017.09.006

    Article  Google Scholar 

  46. IHFC (2012) Global Heat Flow Database of the International Heat Flow Commission. Last accessed 14 April 2021, https://ihfc-iugg.org/products/global-heat-flow-database/data

  47. Ivanov AV, Demonterova EI, He H, Perepelov AB, Travin AV, Lebedev VA (2015) Volcanism in the Baikal rift: 40 years of active-versus-passive model discussion. Earth Sci Rev 148:18–43. https://doi.org/10.1016/j.earscirev.2015.05.011

    Article  Google Scholar 

  48. Jaupart C, Mareschal J-C, Iarotsky L (2016) Radiogenic heat production in the continental crust. Lithos 262:398–427. https://doi.org/10.1016/j.lithos.2016.07.017

    Article  Google Scholar 

  49. Kiselev AI, Golovko HA, Medvedev ME (1978) Petrochemistry of Cenozoic basalts and associated rocks in the Baikal rift zone. Tectonophysics 45:49–59. https://doi.org/10.1016/0040-1951(78)90223-8

    Article  Google Scholar 

  50. Kondorskaya NV, Shebalin NV (1977) New catalog of large earthquakes occurred on the territory of the USSR from the ancient times to. USSR, Nauka, Moscow ((in Russian))

    Google Scholar 

  51. Koulakov I (2011) High-frequency P and S velocity anomalies in the upper mantle beneath Asia from inversion of worldwide traveltime data. J Geophys Res Solid Earth 116:B04301. https://doi.org/10.1029/2010JB007938

    Article  Google Scholar 

  52. Krylov SV, Mishenkina ZR, Kulchitskii YV, Ten EN, Shelud’ko IF (1993) Characteristics of the seismoactive lithosphere for the north-eastern Baikal region from the detailed DSS-studies on P- and S-waves. Russ Geol Geophys 34(8):110–119 (Translated from Krylov SV, Mishenkina ZR, Kulchitskii YV, Ten EN, Shelud’ko IF (1993) Geologiya i Geofizika 34(8):110–119)

    Google Scholar 

  53. Krylov SV, Ten EN (1995) Strength and elastic properties of the source zones of strong earthquakes in the areas of the Baikal and North Tien Shan regions. Russ Geol Geophys 36(2):137–150 (Translated from Krylov SV, Ten EN (1995) Geologiya i Geofizika 36(2):137–150)

    Google Scholar 

  54. Kudriavcev VA (ed) (1978) Permafrost science (geocryology). Moscow State University Publishing House, Moscow, USSR ((in Russian))

    Google Scholar 

  55. Kumar R, Bansal AR, Betts PG, Ravat D (2021) Re-assessment of the depth to the base of magnetic sources (DBMS) in Australia from aeromagnetic data using the defractal method. Geophys J Int 225(1):530–547. https://doi.org/10.1093/gji/ggaa601

    Article  Google Scholar 

  56. Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—A 1-degree global model of Earth's crust. In: European Geoscience Union General Assembly, EGU2013-2658.

  58. Lebedev S, Meier T, van der Hilst RD (2006) Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth Planet Sci Lett 249:415–424. https://doi.org/10.1016/j.epsl.2006.07.007

    Article  Google Scholar 

  59. Lesur V, Hamoudi M, Choi Y, Dyment J, Thébault E (2016) Building the second version of the World Digital Magnetic Anomaly Map (WDMAM). Earth Planets Space 68(1):1–13

    Article  Google Scholar 

  60. Li C-F, Wang J (2016) Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia. Mar Geophys Res 37(1):1–20. https://doi.org/10.1007/s11001-016-9265-4

    Article  Google Scholar 

  61. Li C-F, Lu Y, Wang J (2017) A global reference model of Curie-point depths based on EMAG2. Sci Rep 7:45129. https://doi.org/10.1038/srep45129

    Article  Google Scholar 

  62. Logatchev NA (2003) History and geodynamics of the Baikal rift. Russ Geol Geophys 44(5):373–387

    Google Scholar 

  63. Logatchev NA, Florensov NA (1978) The Baikal system of rift valleys. Tectonophysics 45:1–13. https://doi.org/10.1016/0040-1951(78)90218-4

    Article  Google Scholar 

  64. Logatchev NA, Zorin YuA (1987) Evidence and causes of the two-stage development of the Baikal rift. Tectonophysics 143:225–234. https://doi.org/10.1016/0040-1951(87)90092-8

    Article  Google Scholar 

  65. Logatchev NA, Zorin YuA (1992) Baikal rift zone: structure and geodynamics. Tectonophysics 208:273–286. https://doi.org/10.1016/0040-1951(92)90349-B

    Article  Google Scholar 

  66. Lomonosov IS (1974) Geochemistry and formation of moderm gidrotherms in the Baikal rift zone. Nauka, Novosibirsk, USSR ((in Russian))

    Google Scholar 

  67. Lysak S (1995) Terrestrial heat and temperatures in the upper crust in South East Siberia. Bull Centro Rech Explor Prod Elf Aquitaine 19:39–57

    Google Scholar 

  68. Manea M, Manea VC (2011) Curie point depth estimates and correlation with subduction in Mexico. Pure Appl Geophys 168:1489–1499. https://doi.org/10.1007/s00024-010-0238-2

    Article  Google Scholar 

  69. Mareschal J-C, Jaupart C (2013) Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics 609:524–534. https://doi.org/10.1016/j.tecto.2012.12.001

    Article  Google Scholar 

  70. Maule CF, Purucker ME, Olsen N, Mosegaard K (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309(5733):464–467. https://doi.org/10.1126/science.1106888

    Article  Google Scholar 

  71. Maus S, Gordon D, Fairhead DJ (1997) Curie temperature depth estimation using a self-similar magnetization model. Geophys J Int 129:163–168

    Article  Google Scholar 

  72. Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, von Frees RRB, Gaina C, Golynsky S, Kucks R, Lühr H, Milligan P, Mogren S, Müller RD, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thébault E, Caratori Tontini F (2009) EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochem Geophys Geosyst 10:Q08005. https://doi.org/10.1029/2009GC002471

    Article  Google Scholar 

  73. Mazukabzov AM, Sklyarov EV, Donskaya TV, Gladkochub DP, Fedorovsky VS (2011) Metamorphic core complexes of the Transbaikalia: review. Geodyn Tectonophys 2(2):95–125. https://doi.org/10.5800/GT-2011-2-2-0036 (Translated from Mazukabzov AM, Sklyarov EV, Donskaya TV, Gladkochub DP, Fedorovsky VS (2011) Geodinamika i Tectonofizika 2(2):95–125)

    Article  Google Scholar 

  74. Melnikova VI (2008) Crust strain parameters in the Baikal Rift Zone, from seismic data. Ph.D. thesis, Institute of the Earth’s Crust SB RAS, Irkutsk, Russia (in Russian)

  75. Melnikova VI, Gilyova NA (2017) Relationship between seismicity in the northern Pribaikalye and the block structure of the crust. Dokl Earth Sci 473:386–389. https://doi.org/10.1134/S1028334X17040031

    Article  Google Scholar 

  76. Melnikova V, Seredkina A, Radziminovich Y, Melnikov A, Gilyova N (2017a) The February 1, 2011 Mw 4.7 earthquake: evidence of local extension in western Transbaikalia (Eastern Siberia). J Asian Earth Sci 135:110–121. https://doi.org/10.1016/j.jseaes.2016.12.031

    Article  Google Scholar 

  77. Melnikova VI, Gileva NA, Seredkina AI (2017b) Analysis of the results of seismic observations in the area of the Severomuysk tonnel of the Baikal-Amur Railway. In: Proceedings of XII international seismological school “Modern methods of processing and interpretation of seismological data”, pp 217–219 (in Russian)

  78. Melnikova VI, Seredkina AI, Gileva NA (2020) Spatio-temporal patterns of the development of strong seismic activations (1999–2007) in the Northern Baikal area. Russ Geol Geophys 61(1):96–109. https://doi.org/10.15372/RGG2019103

    Article  Google Scholar 

  79. Meyer B, Chulliat A, Saltus R (2017) Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3). Geochem Geophys Geosyst 18:4522–4537. https://doi.org/10.1002/2017GC007280

    Article  Google Scholar 

  80. Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–426. https://doi.org/10.1126/science.189.4201.419

    Article  Google Scholar 

  81. Mordvinova VV, Kobelev MM, Khritova MA, Turutanov EKh, Kobeleva EA, Trynkova DS, Tsydypova LR (2019) The deep velocity structure of the southern margin of the Siberian Craton with respect to Baikal rifting. Dokl Earth Sc 484:66–70. https://doi.org/10.1134/S1028334X19010033

    Article  Google Scholar 

  82. Nielsen C, Thybo H (2009) No Moho uplift below the Baikal Rift Zone: evidence from a seismic refraction profile across southern Lake Baikal. J Geophys Res Solid Earth 114:B08306. https://doi.org/10.1029/2008JB005828

    Article  Google Scholar 

  83. Nikishin AM, Sobornov KO, Prokopiev AV, Frolov SV (2010) Tectonic evolution of the Siberian Platform during the Vendian and Phanerozoic. Mosc Univ Geol Bull 65(1):1–16. https://doi.org/10.3103/S0145875210010011

    Article  Google Scholar 

  84. Nokleberg WJ (ed) (2010) Metallogenesis and tectonics of Northeast Asia. US Geological Survey Professional Paper 1765

  85. Novoselova MR (1975) On the patterns and sources of gravity and magnetic anomalies in the northeastern part of the Baikal rift zone. In: Baikal Rift. Nauka, Novosibirsk, USSR, pp 50–65 (in Russian)

  86. Novoselova MR (1978) Magnetic anomalies of the Baikal rift zone and adjacent areas. Tectonophysics 45:95–100. https://doi.org/10.1016/0040-1951(78)90227-5

    Article  Google Scholar 

  87. Núñez Demarco P, Prezzi C, Sánchez Bettucci L (2021) Review of Curie point depth determination through different spectral methods applied to magnetic data. Geophys J Int 224(1):17–39. https://doi.org/10.1093/gji/ggaa361

    Article  Google Scholar 

  88. Okubo Y, Graf RJ, Hansen RO, Ogawa K, Tsu H (1985) Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics 50:481–494

    Article  Google Scholar 

  89. Okubo Y, Matsunaga T (1994) Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. J Geophys Res Solid Earth 99(B11):22363–22371

    Article  Google Scholar 

  90. Parfenov LM, Khanchuk AI, Badarch G, Miller RJ, Naumova VV, Nokleberg WJ, Ogasawara M, Prokopiev AV, Yan H (2003) Preliminary northeast Asia geodynamics map. US Geological Survey Open-File Report 03–205, 2 sheets, scale 1:5000000. http://pubs.usgs.gov/of/2003/0205/

  91. Pavlenkova GA, Pavlenkova NI (2006) Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data. Tectonophysics 416:33–52. https://doi.org/10.1016/j.tecto.2005.11.010

    Article  Google Scholar 

  92. Petit C, Déverchère J (2006) Structure and evolution of the Baikal rift: a synthesis. Geochem Geophys Geosyst 7(11):Q11016. https://doi.org/10.1029/2006GC001265

    Article  Google Scholar 

  93. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 3(1):267–280

    Article  Google Scholar 

  94. Polyak BG, Tolstikhin IN (1985) Isotopic composition of the earth’s helium and the problem of the motive forces of tectogenesis. Chem Geol Isotope Geosci Sect 52(1):9–33. https://doi.org/10.1016/0168-9622(85)90005-3

    Article  Google Scholar 

  95. Poort J, van der Beek P, ter Voorde M (1998) An integrated modelling study of the central and northern Baikal rift: evidence for non-uniform lithospheric thinning. Tectonophysics 291:101–122

    Article  Google Scholar 

  96. Popov AM (1990) A deep geophysical study in the Baikal region. Pure Appl Geophys 134:575–587

    Article  Google Scholar 

  97. Popov AM, Kiselev AI, Mordvinova VV (1999) Geodynamical interpretation of crustal and upper mantle electrical conductivity anomalies in Sayan-Baikal province. Earth Planets Space 51:1079–1089

    Article  Google Scholar 

  98. Puzyrev NN (ed) (1981) The Baikal interior from seismic data. Nauka, Novosibirsk, USSR ((in Russian))

    Google Scholar 

  99. Radziminovich NA (2010) Focal depths of earthquakes in the Baikal region: a review. Izv Phys Solid Earth 46:216–229. https://doi.org/10.1134/S1069351310030043

    Article  Google Scholar 

  100. Radziminovich YB, Melnikova VI, Seredkina AI, Gileva NA, Radziminovich NA, Papkova AA (2012) The Balei earthquake of 6 January 2006 (Mw=4.5): a rare case of seismic activity in eastern Transbaikalia. Russ Geol Geophys 53:1063–1073

    Article  Google Scholar 

  101. Radziminovich NA, Gileva NA, Melnikova VI, Ochkovskaya MG (2013) Seismicity of the Baikal rift system from regional network observations. J Asian Earth Sci 62:146–161. https://doi.org/10.1016/j.jseaes.2012.10.029

    Article  Google Scholar 

  102. Rasskasov SV (1994) Magmatism related to the East Siberia rift system and the geodynamics. Bull Centro Rech Explor Prod Elf Aquitaine 18:437–452

    Google Scholar 

  103. Rautian TG, Khalturin VI, Fujita K, Mackey KG, Kendall AD (2007) Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales. Seismol Res Lett 78:579–590. https://doi.org/10.1785/gssrl.78.6.579

    Article  Google Scholar 

  104. Ravat D (2004) Constructing full spectrum potential-field anomalies for enhanced geodynamical analysis through integration of surveys from different platforms. In: AGU fall meeting, G44A-03.

  105. Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169:421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x

    Article  Google Scholar 

  106. Saada SA (2016) Curie point depth and heat flow from spectral analysis of aeromagnetic data over the northern part of Western Desert. Egypt J Appl Geophys 134:100–111. https://doi.org/10.1016/j.jappgeo.2016.09.003

    Article  Google Scholar 

  107. Salazar JM, Vargas CA, Leon H (2017) Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies. Tectonophysics 694:400–413. https://doi.org/10.1016/j.tecto.2016.11.023

    Article  Google Scholar 

  108. Salem A, Green C, Ravat D, Singh KH, East P, Fairhead JD, Morgen S, Biegert E (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624–625:75–86. https://doi.org/10.1016/j.tecto.2014.04.027

    Article  Google Scholar 

  109. Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transitional zone. Geophys J Int 194:417–449. https://doi.org/10.1093/gji/ggt095

    Article  Google Scholar 

  110. Seredkina A (2019) S-wave velocity structure of the upper mantle beneath the Arctic region from Rayleigh wave dispersion data. Phys Earth Planet Inter 290:76–86. https://doi.org/10.1016/j.pepi.2019.03.007

    Article  Google Scholar 

  111. Seredkina AI (2021) The state of the art in studying the deep structure of the Earth’s crust and upper mantle beneath the Baikal rift from seismological data. Izv Phys Solid Earth 57(2):180–202. https://doi.org/10.1134/S1069351321020117

    Article  Google Scholar 

  112. Seredkina AI, Melnikova VI (2014) Seismic moment tensor of Pribaikalye earthquakes from the surface-wave amplitude spectra. Izv Phys Solid Earth 50(3):103–114. https://doi.org/10.1134/S1069351314030094

    Article  Google Scholar 

  113. Seredkina AI, Gileva NA (2016) Correlation between moment magnitude and energy class of earthquakes in Pribaikalia and Transbaikalia. Seismic Instrum 52:29–38 (Translated from Seredkina AI, Gileva NA (2016) Seysmicheskiye Pribory 52:29–38)

    Google Scholar 

  114. Seredkina A, Kozhevnikov V, Melnikova V, Solovey O (2016) Seismicity and S-wave velocity structure of crust and upper mantle in the Baikal rift and adjacent regions. Phys Earth Planet Inter 261:152–160. https://doi.org/10.1016/j.pepi.2016.10.011

    Article  Google Scholar 

  115. Seredkina AI, Melnikova VI (2018) Seismotectonic crustal strains of the Mongol-Baikal seismic belt from seismological data. In: D’Amico S (ed) Moment tensor solutions—a useful tool for seismotectonics. Springer, Switzerland, pp 497–517. https://doi.org/10.1007/978-3-319-77359-9_22

    Chapter  Google Scholar 

  116. Seredkina AI, Filippov SV (2019) Parameters of the magnetoactive layer of the lithosphere for the Siberian Platform—Transbaikalia profile based on WDMAM 2.0 model data. Geomagn Aeronomy 59(6):761–769. https://doi.org/10.1134/S0016793219060094

    Article  Google Scholar 

  117. Seredkina AI, Filippov SV (2021) Depth to magnetic sources in the Arctic and its relationship to some parameters of the lithosphere. Russ Geol Geophys. https://doi.org/10.15372/GiG2020162 ((in press))

    Article  Google Scholar 

  118. Sibson RH (1982) Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull Seism Soc Am 72(1):151–163

    Google Scholar 

  119. Sibson RH (1984) Roughness at the base of the seismogenic zone: contributing factors. J Geophys Res Solid Earth 89(B7):5791–5799

    Article  Google Scholar 

  120. Sloan RA, Jackson JA, McKenzie D, Priestley K (2011) Earthquake depth distributions in central Asia, and their relations with lithospheric thickness, shortening and extension. Geophys J Int 185:1–29. https://doi.org/10.1111/j.1365-246X.2010.04882.x

    Article  Google Scholar 

  121. Smelov AP, Shatsky VS, Ragozin AL, Reutskii VN, Molotkov AE (2012) Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan-Stanovoy shield). Russ Geol Geophys 53:1012–1022. https://doi.org/10.1016/j.rgg.2012.08.005

    Article  Google Scholar 

  122. Sokolova LS, Duchkov AD (1978) Crustal thermal models for South Siberia. Studia Geoph Geod 22:200–206

    Article  Google Scholar 

  123. Sklyarov EV, Mazukabzov AM, Melnikov AI (1997) The Cordilleran-type metamorphic core complexes. Publishing House of SB RAS, Novosibirsk ((in Russian))

    Google Scholar 

  124. Spector A, Grant S (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  125. Stacey FD, Banerjee SK (1974) The physical principles of rock magnetism. Elsevier, Amsterdam

    Google Scholar 

  126. Tanaka A (2007) Magnetic and seismic constraints on the crustal thermal structure beneath the Kamchatka Peninsula. In: Volcanism and tectonics of the Kamchatka Peninsula and adjacent arcs. Geophys Monograph Series, 172. AGU, Washington DC, USA, pp 100–105.

  127. Tanaka A (2017) Global centroid distribution of magnetized layer from world digital magnetic anomaly map. Tectonics 36:3248–3253. https://doi.org/10.1002/2017TC004770

    Article  Google Scholar 

  128. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470

    Article  Google Scholar 

  129. Tanaka A, Ishikawa Y (2005) Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: the Japanese islands case study. Phys Earth Planet Inter 152:257–266. https://doi.org/10.1016/j.pepi.2005.04.011

    Article  Google Scholar 

  130. Tapponier P, Molnar P (1979) Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baikal regions. J Geophys Res Solid Earth 84:3425–3459

    Article  Google Scholar 

  131. Taran Y, Inguaggiato S, Varley N, Capasso G, Favara R (2002) Helium and carbon isotopes in thermal waters of the Jalisco block. Mexico Geofisica Int 41(4):459–466

    Google Scholar 

  132. Ten Brink US, Taylor MH (2002) Crustal structure of central Lake Baikal: insight into intracontinental rifting. J Geophys Res Solid Earth 107:B7. https://doi.org/10.1029/2001JB000300

    Article  Google Scholar 

  133. Tiberi C, Diament M, Déverchère J, Petit-Mariani C, Mikhailov V, Tikhotsky S, Achauer U (2003) Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismolog. J Geophys Res Solid Earth 108(B3):2133. https://doi.org/10.1029/2002JB001880

    Article  Google Scholar 

  134. Trifonova P, Zhelev Zh, Petrova T, Bojadgieva K (2009) Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics 473:362–374. https://doi.org/10.1016/j.tecto.2009.03.014

    Article  Google Scholar 

  135. Vinnik LP, Oreshin SI, Tsydypova LR, Mordvinova VV, Kobelev MM, Khritova MA, TsA T (2017) Crust and mantle of the Baikal Rift Zone from P- and S-wave receiver functions. Geodyn Tectonophys 8(4):695–709. https://doi.org/10.5800/GT-2017-8-4-0313 (Translated from Vinnik LP, Oreshin SI, Tsydypova LR, Mordvinova VV, Kobelev MM, Khritova MA, Tubanov TsA (2017) Geodinamika i Tectonofizika 8(4):695–709)

    Article  Google Scholar 

  136. Wasilewski PJ, Thomas HH, Mayhew MA (1979) The Moho as a magnetic boundary. Geophys Res Lett 6:541–544

    Article  Google Scholar 

  137. Wasilewski PJ, Mayhew MA (1992) The Moho as a magnetic boundary revisited. Geophys Res Lett 19(22):2259–2262

    Article  Google Scholar 

  138. Wen L, Kang G, Bai C, Gao G (2019) Studies on the relationships of the Curie surface with heat flow and crustal structures in Yunnan Province, China, and its adjacent areas. Earths Planets Space 71:85. https://doi.org/10.1186/s40623-019-1063-1

    Article  Google Scholar 

  139. Wu H, Huang Z, Zhao D (2021) Deep structure beneath the southwestern flank of the Baikal rift zone and adjacent areas. Phys Earth Planet Inter 310:106616. https://doi.org/10.1016/j.pepi.2020.106616

    Article  Google Scholar 

  140. Yakovlev AV, Kulakov IYu, Tychkov SA (2007) Moho depths and three-dimensional velocity structure of the crust and upper mantle beneath the Baikal region, from local tomography. Russ Geol Geophys 48(2):204–220. https://doi.org/10.1016/j.rgg.2007.02.005

    Article  Google Scholar 

  141. Zorin YuA, Osokina SV (1984) Model of the transient temperature field of the Baikal rift lithosphere. Tectonophysics 103:193–204

    Article  Google Scholar 

  142. Zorin YuA, Novoselova MR, Turutanov EKh, Kozhevnikov VM (1990) Structure of the lithosphere of the Mongolian-Siberian Mountainous Province. J Geodyn 11:327–342. https://doi.org/10.1016/0264-3707(90)90015-M

    Article  Google Scholar 

  143. Zorin YuA, Mordvinova VV, Turutanov EKh, Belichenko BG, Artemyev AA, Kosarev GL, Gao SS (2002) Low seismic velocity in the Earth’s crust beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and their possible geological implication. Tectonophysics 359:307–327. https://doi.org/10.1016/S0040-1951(02)00531-0

    Article  Google Scholar 

  144. Zorin YuA, Turutanov EKh, Mordvinova VV, Kozhevnikov VM, Yanovskaya TB, Treussov AV (2003) The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371:153–173. https://doi.org/10.1016/S0040-1951(03)00214-2

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Ministry of Education and Science of Russia. We kindly thank Nadezhda A. Gileva (Baikal Branch of Federal Research Center Geophysical Survey of the Russian Academy of Sciences) for compiling the catalog of regional earthquakes used in this study. The catalog was obtained using the large-scale research facilities “Seismic infrasound array for monitoring Arctic cryolitozone and continuous seismic monitoring of the Russian Federation, neighboring territories and the world.” We are most grateful to Dr. Valentina I. Melnikova and Dr. Yan B. Radziminovich (Institute of the Earth’s Crust of the Russian Academy of Sciences) for helpful discussion of the manuscript. We also thank Prof. Michael J. Rycroft and two anonymous reviewers for their useful comments.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

AIF implemented the calculations of the CPD and seismogenic layer thickness. She wrote the draft of the manuscript. VAG performed the calculations of the average temperature–depth geotherms from surface heat flow data. SVF implemented the software for spectral analysis of the lithospheric geomagnetic field. All the authors contributed to interpretation and discussion of the results and improvement of the initial draft manuscript.

Corresponding author

Correspondence to Alena I. Filippova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Golubev, V.A. & Filippov, S.V. Curie Point Depth and Thermal State of the Lithosphere Beneath the Northeastern Flank of the Baikal Rift Zone and Adjacent Areas. Surv Geophys (2021). https://doi.org/10.1007/s10712-021-09651-7

Download citation

Keywords

  • Lithospheric geomagnetic field
  • Curie point depth
  • Surface heat flow
  • Seismogenic layer
  • Crust
  • Lithosphere
  • Baikal rift zone