Joint Inversion of Frequency Components of PP- and PSV-Wave Amplitudes for Attenuation Factors Using Second-Order Derivatives of Anelastic Impedance


Attenuation factor (1/Q) is an important indicator that is sensitive to hydrocarbon-bearing reservoirs. In attenuative media, seismic wave velocity is complex and frequency dependent, and 1/Q appears in the imaginary part of wave velocity. Focusing on the real part of complex wave velocity in attenuative media, we present new-parameterized P- and S-wave velocities, in which a maximum P-wave attenuation factor (\(1/Q_\mathrm{Pm}\)) is involved. Using solutions of Zoeppritz equations, we derive approximate PP- and PSV-wave reflection coefficients and anelastic impedances (AEI) as a function of \(1/Q_\mathrm{Pm}\), and we employ an empirical relationship to replace the S-wave attenuation factor with \(1/Q_\mathrm{Pm}\) in the derivation of PSV-wave reflection coefficient. Using the derived reflection coefficients and AEI, we establish an inversion approach and workflow of utilizing PP- and PSV-wave seismic amplitudes to estimate elastic parameters (i.e. P- and S-wave moduli, density) and anelastic parameter (i.e. \(1/Q_\mathrm{Pm}\)). Inputting different frequency components of PP- and PSV-wave seismic wave amplitudes, a model-based least-squares (LS) algorithm is employed to implement the deconvolution for estimating the PP- and PSV-wave AEI of different dominant frequencies and incidence angles, and the joint inversion of PP- and PSV-wave AEI for elastic parameters and attenuation factor is implemented using a Newton method. We employ synthetic seismic data of different signal-to-noise ratios (SNR) to verify the stability and robustness of the established inversion approach, and we finally apply the approach to real datasets acquired over a hydrocarbon reservoir. It illustrates that stable elastic parameters and attenuation factors may be estimated; and combining the inverted elastic parameters and attenuation factor, we may realize the reliable identification and interpretation of hydrocarbon reservoirs.

Article Highlights

  • PP- and PSV-wave reflection coefficients and anelastic impedances are derived in terms of P- and S-wave moduli, density, and P-wave attenuation factor at the characterize frequency.

  • Approach of joint inversion of PP- and PSV-wave seismic datasets for estimating P and S-wave moduli, density and P-wave attenuation factor based on first- and second-order derivatives of anelastic impedances is established.

  • Tests on synthetic and real datasets imply the proposed inversion approach can be used as a valuable tool for generating reliable results of elastic properties and attenuation factor for hydrocarbon reservoir characterization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. Aki K, Richards PG (2002) Quantitative seismology. University science books, California

  2. Chapman M, Liu E, Li XY (2006) The influence of fluid sensitive dispersion and attenuation on AVO analysis. Geophys J Int 167(1):89–105

    Article  Google Scholar 

  3. Chen H (2020) Seismic frequency component inversion for elastic parameters and maximum inverse quality factor driven by attenuating rock physics models. Surv Geophys 41:835–857

    Article  Google Scholar 

  4. Chen H, Innanen KA, Chen T (2018) Estimating P-and S-wave inverse quality factors from observed seismic data using an attenuative elastic impedance. Geophysics 83(2):R173–R187

    Article  Google Scholar 

  5. Chen H, Li J, Innanen KA (2020) Nonlinear inversion of seismic amplitude variation with offset for an effective stress parameter. Geophysics 85(4):R299–R311

    Article  Google Scholar 

  6. Connolly P (1999) Elastic impedance. Lead Edge 18(4):438–452

    Article  Google Scholar 

  7. Dvorkin J, Nur A (1993) Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics 58(4):524–533

    Article  Google Scholar 

  8. Dvorkin J, Nolen-Hoeksema R, Nur A (1994) The squirt-flow mechanism: macroscopic description. Geophysics 59(3):428–438

    Article  Google Scholar 

  9. Dvorkin J, Mavko G, Nur A (1995) Squirt flow in fully saturated rocks. Geophysics 60(1):97–107

    Article  Google Scholar 

  10. Dvorkin JP, Mavko G (2006) Modeling attenuation in reservoir and nonreservoir rock. Lead Edge 25(2):194–197

    Article  Google Scholar 

  11. IIkelle LT, Amundsen L (2005) Introduction to petroleum seismology, investigations in geophysics, Society of Exploration Geophysicists, Tulsa, OK.

  12. Innanen KA (2011) Inversion of the seismic AVF/AVA signatures of highly attenuative targets. Geophysics 76(1):R1–R14

    Article  Google Scholar 

  13. Köhn D (2011) Time domain 2D elastic full waveform tomography. PhD thesis, University of Kiel

  14. Kurt H (2007) Joint inversion of AVA data for elastic parameters by bootstrapping. Comput Geosci 33(3):367–382

    Article  Google Scholar 

  15. Larsen JA (1999) AVO inversion by simultaneous PP and PS inversion. Master’s thesis, University of Calgary

  16. Lines L, Wong J, Innanen K, Vasheghani F, Sondergeld C, Treitel S, Ulrych T (2013) Research note: experimental measurements of Q-contrast reflections. Geophys Prospect 62(1):190–195

    Article  Google Scholar 

  17. Margrave GF (2013) Q tools: Summary of CREWES software for Q modelling and analysis. the 25th Annual Report of the CREWES Project

  18. Margrave GF, Stewart RR, Larsen JA (2001) Joint PP and PS seismic inversion. Lead Edge 20(9):1048–1052

    Article  Google Scholar 

  19. Martins JL (2006) Elastic impedance in weakly anisotropic media. Geophysics 71(3):D73–D83

    Article  Google Scholar 

  20. Mavko G, Dvorkin J, Walls J (2005) A theoretical estimate of S-wave attenuation in sediment. In: SEG Technical Program Expanded Abstracts 2005, Society of Exploration Geophysicists, pp 1469–1472

  21. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Moradi S, Innanen KA (2015) Scattering of homogeneous and inhomogeneous seismic waves in low-loss viscoelastic media. Geophys J Int 202(3):1722–1732

    Article  Google Scholar 

  23. Moradi S, Innanen KA (2016) Viscoelastic amplitude variation with offset equations with account taken of jumps in attenuation angle. Geophysics 81(3):N17–N29

    Article  Google Scholar 

  24. Morozov IB (2011) Anelastic acoustic impedance and the correspondence principle. Geophys Prospect 59(1):24–34

    Article  Google Scholar 

  25. Whitcombe DN (2002) Elastic impedance normalization. Geophysics 67(1):60–62

    Article  Google Scholar 

  26. Zhang F, Li X (2015) Exact elastic impedance tensor for isotropic media. Sci China Earth Sci 58(8):1350–1360

    Article  Google Scholar 

  27. Zhang Z (2010) Assessing attenuation, fractures, and anisotropy using logs, vertical seismic profile, and three-component seismic data: heavy oilfield and potash mining examples. PhD thesis, University of Calgary

  28. Zong Z, Yin X, Wu G (2013) Elastic impedance parameterization and inversion with young’s modulus and poisson’s ratioei with young and poisson. Geophysics 78(6):N35–N42

    Article  Google Scholar 

Download references


This work was sponsored by Shanghai Sailing Program and Natural Science Foundation of Shanghai, and it was also supported by the Fundamental Research Funds for the Central Universities. We thank the sponsors of CREWES for continued support. This work was also funded by NSERC (Natural Science and Engineering Research Council of Canada) through the grant CRDPJ 461179-13. We also acknowledge the Canada First Research Excellence Fund, and the Mitacs Accelerate grant Responsible Development of Unconventional Hydrocarbon Reserves. The SINOPEC Key Lab of Multi-Component Seismic Technology is thanked for providing the processed real datasets.

Author information



Corresponding author

Correspondence to Huaizhen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix A: Elastic Parameters and Incidence Angles Expressed Using Scatterings in Anelastic Media

Following Moradi and Innanen (2016), we rewrite frequency-dependent P- and S-wave velocities, P- and S-wave incidence and transmission angles, and density of top and bottom layers as

$$\begin{aligned} \begin{aligned} {\rho _{1}}&={{\rho }}\left( 1-\frac{1}{2}\frac{\varDelta {\rho }}{{{\rho }}}\right) ,~ {\rho _{2}}={{\rho }}\left( 1+\frac{1}{2}\frac{\varDelta {\rho }}{{{\rho }}}\right) ,\\ {\mathcal {V}_\mathrm{{P1}}}&={\mathcal {V}_\mathrm{{P}}}\left( 1-\frac{1}{2}\frac{\varDelta {{\mathcal {V}_\mathrm{{P}}}}}{{{{\mathcal {V}_\mathrm{{P}}}}}}\right) ,~ {\mathcal {V}_\mathrm{{P2}}}={\mathcal {V}_\mathrm{{P}}}\left( 1+\frac{1}{2}\frac{\varDelta {{\mathcal {V}_\mathrm{{P}}}}}{{{{\mathcal {V}_\mathrm{{P}}}}}}\right) ,\\ {\mathcal {V}_\mathrm{{S1}}}&={\mathcal {V}_\mathrm{{S}}}\left( 1-\frac{1}{2}\frac{\varDelta {{\mathcal {V}_\mathrm{{S}}}}}{{{{\mathcal {V}_\mathrm{{S}}}}}}\right) ,~ {\mathcal {V}_\mathrm{{S2}}}={\mathcal {V}_\mathrm{{S}}}\left( 1+\frac{1}{2}\frac{\varDelta {{\mathcal {V}_\mathrm{{S}}}}}{{{{\mathcal {V}_\mathrm{{S}}}}}}\right) ,\\ {\sin {{\theta }_\mathrm{P1}}}&= {\sin {{{\theta }_\mathrm{P}}}\left( 1-\frac{1}{2}\frac{{\varDelta }\theta _\mathrm{P}}{\tan {\theta _\mathrm{P}}}\right) },~ {\sin {{\theta }_\mathrm{P2}}}={\sin {{{\theta }_\mathrm{P}}}}\left( 1+\frac{1}{2}\frac{{\varDelta {\theta }_\mathrm{P}}}{\tan {{{{\theta }_\mathrm{P}}}}}\right) ,\\ {\sin {{\theta }_\mathrm{S1}}}&={\sin {{{\theta }_\mathrm{S}}}}\left( 1-\frac{1}{2}\frac{{\varDelta {\theta }_\mathrm{S}}}{\tan {{{{\theta }_\mathrm{S}}}}}\right) ,~ {\sin {{\theta }_\mathrm{S2}}}={\sin {{{\theta }_\mathrm{S}}}}\left( 1+\frac{1}{2}\frac{{\varDelta {\theta }_\mathrm{S}}}{\tan {{{{\theta }_\mathrm{S}}}}}\right) . \end{aligned} \end{aligned}$$

Combining Eqs. (22) and (11), we express perturbation in incidence angles as

$$\begin{aligned} \begin{aligned}&{{\varDelta {\theta }_\mathrm{P}}}{\approx }\frac{\varDelta \mathcal {V}_\mathrm{P}}{\mathcal {V}_\mathrm{P}}\tan {{\theta }_\mathrm{P}},\\&{{\varDelta {\theta }_\mathrm{S}}}{\approx }\frac{\varDelta \mathcal {V}_\mathrm{S}}{\mathcal {V}_\mathrm{S}}\tan {{\theta }_\mathrm{S}}. \end{aligned} \end{aligned}$$

Appendix B: Elastic Parameters and Incidence Angles Expressed Using Scatterings in Anelastic Media

Substituting expressions of P- and S-wave velocities and moduli of upper and lower layers to solutions of Zoeppritz equations for PP and PSV waves, we first obtain reflection coefficients of PP and PSV waves after some algebra, which are similar to reflection coefficients that are derived for PP and PSV waves in elastic media, as

$$\begin{aligned} \begin{aligned} R_\mathrm{PP}&{\approx }\frac{1}{4\cos ^2\theta _\mathrm{P}}\frac{{\varDelta }{\mathcal {M}}}{{\mathcal {M}}} -2{{{{g}}}}{\sin ^2{\theta _\mathrm{P}}}\frac{{\varDelta }{\mathcal {U}}}{{\mathcal {U}}}+\frac{\cos {2\theta _\mathrm{P}}}{4\cos ^2{\theta _\mathrm{P}}}\frac{{\varDelta }\rho }{\rho },\\ R_\mathrm{PS}&{\approx }{\sqrt{{{g}}}}{\sin {\theta _\mathrm{P}}}\left( \frac{\sqrt{{{g}}}\sin ^2{\theta _\mathrm{P}}}{\sqrt{1-{{{g}}}{\sin ^2\theta _\mathrm{P}}}}-{\cos {\theta _\mathrm{P}}}\right) \frac{{\varDelta }{\mathcal {U}}}{{\mathcal {U}}}-\frac{{{{g}}}\sin {\theta _\mathrm{P}}}{2\sqrt{1-{{{g}}}{\sin ^2\theta _\mathrm{P}}}}\frac{{\varDelta }\rho }{\rho }, \end{aligned} \end{aligned}$$

where \({{{g}}}=\frac{{\mathcal {U}}}{{\mathcal {M}}}\). We observe that effects of elastic properties and attenuation factor are hidden in the reflectivities \(\frac{{\varDelta }{\mathcal {M}}}{{\mathcal {M}}}\) and \(\frac{{\varDelta }{\mathcal {U}}}{{\mathcal {U}}}\), and we next approximately express \(\frac{{\varDelta }{\mathcal {M}}}{{\mathcal {M}}}\) and \(\frac{{\varDelta }{\mathcal {U}}}{{\mathcal {U}}}\) as

$$\begin{aligned} \begin{aligned} \frac{{\varDelta }\mathcal {M}}{\mathcal {M}}&=\frac{{\varDelta }\left\{ {M}\left[ 1+\frac{2}{\pi {Q_\mathrm{Pm}}}{{\psi \left( \omega \right) }}\right] \right\} }{{M}\left[ 1+\frac{2}{\pi {Q_\mathrm{Pm}}}{{\psi \left( \omega \right) }}\right] }{\approx }\frac{{\varDelta }{M}}{{M}} +\frac{2{{\psi \left( \omega \right) }}}{\pi }{{\varDelta }\left( \frac{1}{{Q_\mathrm{Pm}}}\right) },\\ \frac{{\varDelta }\mathcal {U}}{\mathcal {U}}&=\frac{{\varDelta }\left\{ {\mu }\left[ 1+\frac{2}{\pi {Q_\mathrm{Pm}}}\frac{{{\psi \left( \omega \right) }}}{h\left( \omega \right) }\right] \right\} }{{\mu }\left[ 1+\frac{2}{\pi {Q_\mathrm{Pm}}}\frac{{{\psi \left( \omega \right) }}}{h\left( \omega \right) }\right] }{\approx }\frac{{\varDelta }{\mu }}{{\mu }} +\frac{2}{\pi }\frac{{{\psi \left( \omega \right) }}}{{h\left( \omega \right) }}{{\varDelta }\left( \frac{1}{{Q_\mathrm{Pm}}}\right) }. \end{aligned} \end{aligned}$$

Substituting Eq. (25) into Eq.(24), we obtain final expressions of frequency-dependent PP- and PSV-wave reflection coefficients as

$$\begin{aligned} \begin{aligned} R_\mathrm{PP}\left( \theta _\mathrm{P},\omega \right) {\approx }&a_{M}\left( \theta _\mathrm{P}\right) \frac{{\varDelta }{M}}{{M}}+a_{\mu }\left( \theta _\mathrm{P}\right) \frac{{\varDelta }{\mu }}{{\mu }}+a_{\rho }\left( \theta _\mathrm{P}\right) \frac{{\varDelta }\rho }{\rho }+a_{Q}\left( \theta _\mathrm{P},\omega \right) {{\varDelta }\left( \frac{1}{{Q_\mathrm{Pm}}}\right) },\\ R_\mathrm{PS}\left( \theta _\mathrm{P},\omega \right) {\approx }&b_{\mu }\left( \theta _\mathrm{P}\right) \frac{{\varDelta }{\mu }}{{\mu }}+b_{\rho }\left( \theta _\mathrm{P}\right) \frac{{\varDelta }\rho }{\rho }+b_{Q}\left( \theta _\mathrm{P},\omega \right) {{\varDelta }\left( \frac{1}{{Q_\mathrm{Pm}}}\right) }, \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned} a_{M}\left( \theta _\mathrm{P}\right)&=\frac{1}{4}{\sec ^2\theta _\mathrm{P}},~a_{\mu }\left( \theta _\mathrm{P}\right) =-2{{{\gamma }}}{\sin ^2{\theta _\mathrm{P}}},~ a_{\rho }\left( \theta _\mathrm{P}\right) =\frac{\cos {2\theta _\mathrm{P}}}{4\cos ^2{\theta _\mathrm{P}}},\\ a_{Q}\left( \theta _\mathrm{P},\omega \right)&=\frac{1}{2}{\sec ^2\theta _\mathrm{P}}\frac{{{\psi \left( \omega \right) }}}{\pi }-4{{{\gamma }}}{\sin ^2{\theta _\mathrm{P}}}\frac{{{\psi \left( \omega \right) }}}{{\pi }}{h},\\ b_{\mu }\left( \theta _\mathrm{P}\right)&={\sqrt{{\gamma }}}{\sin {\theta _\mathrm{P}}}\left( \frac{\sqrt{{\gamma }}\sin ^2{\theta _\mathrm{P}}}{\sqrt{1-{{\gamma }}{\sin ^2\theta _\mathrm{P}}}}-{\cos {\theta _\mathrm{P}}}\right) ,\\ b_{\rho }\left( \theta _\mathrm{P}\right)&=-\frac{{{\gamma }}\sin {\theta _\mathrm{P}}}{2\sqrt{1-{{\gamma }}{\sin ^2\theta _\mathrm{P}}}},\\ b_{Q}\left( \theta _\mathrm{P},\omega \right)&=\frac{2}{\pi }{\sqrt{{\gamma }}}{\sin {\theta _\mathrm{P}}}\left( \frac{\sqrt{{\gamma }}\sin ^2{\theta _\mathrm{P}}}{\sqrt{1-{{\gamma }}{\sin ^2\theta _\mathrm{P}}}}-{\cos {\theta _\mathrm{P}}}\right) {{{\psi \left( \omega \right) }}}{{h}}, \end{aligned} \end{aligned}$$

and \(\gamma =\frac{\mu }{M}\). We conclude that in Eq.26 the effects of elastic parameters and attenuation factor on PP- and PSV-wave reflection coefficients may be separated explicitly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Moradi, S. & Innanen, K.A. Joint Inversion of Frequency Components of PP- and PSV-Wave Amplitudes for Attenuation Factors Using Second-Order Derivatives of Anelastic Impedance. Surv Geophys (2021).

Download citation


  • Seismic inversion
  • Elastic parameters
  • Attenuation factors
  • Rock physics model