Skip to main content

Thermodiffusion and Diffusion Correction Factors of Neutral Gases in the Earth's Atmosphere

Abstract

The Maxwell–Stefan diffusion equations for multicomponent neutral gas mixtures with thermodiffusion ratios and diffusion correction factors in the Chapman–Cowling third-order approximation are derived. These thermodiffusion ratios and diffusion correction factors are presented explicitly as functions of masses, number densities, thermal conductivities, and the Chapman–Cowling collision integrals of the neutral species under consideration. Applications to the multicomponent mixture of atmospheric neutral gases O, N2, O2, He, H, Ar, H2, N, and NO are considered, and recommendations are given for using the results of this paper in studies of the Earth's atmosphere.

This is a preview of subscription content, access via your institution.

References

  1. Assael MJ, Wakeham WA, Kestin J (1980) Higher-order approximation to the thermal conductivity of monatomic gas mixtures. Int J Thermophys 1(1):7–32. https://doi.org/10.1007/BF00506269

    Article  Google Scholar 

  2. Banks PM, Kockarts G (1973) Aeronomy. Academic Press, New York

    Google Scholar 

  3. Brasseur GP, Solomon S (2005) Aeronomy of the middle atmosphere chemistry and physics of stratosphere and mesosphere, Third revised and enlarged edition. Springer, Dordrecht

    Book  Google Scholar 

  4. Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases, 2nd edn. Cambridge Univ Press, London and New York

    Google Scholar 

  5. Condiff DW (1969) On symmetric multicomponent diffusion coefficients. J Chem Phys 51(10):4209–4212. https://doi.org/10.1063/1.1671780

    Article  Google Scholar 

  6. Curtiss CF (1968) Symmetric gaseous diffusion coefficients. J Chem Phys 49(7):2917–2919. https://doi.org/10.1063/1.1670528

    Article  Google Scholar 

  7. Curtiss CF, Bird RB (1999) Multicomponent diffusion. Ind Eng Chem Res 38(7):2515–2522. https://doi.org/10.1021/ie9901123

    Article  Google Scholar 

  8. Curtiss CF, Hirschfelder JO (1949) Transport properties of multicomponent gas mixtures. J Chem Phys 17(6):550–555. https://doi.org/10.1063/1.1747319

    Article  Google Scholar 

  9. Ern A, Giovangigli V (1994) Multicomponent transport algorithms. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  10. Ferziger JH, Kaper HG (1972) Mathematical theory of transport processes in gases. North-Holland Publ Comp, Amsterdam

    Google Scholar 

  11. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. John Wiley and Sons Inc, New York

    Google Scholar 

  12. Mason EA (1957) Higher approximations for the transport properties of binary gas mixtures II applications. J Chem Phys 27(3):782–790. https://doi.org/10.1063/1.1743829

    Article  Google Scholar 

  13. Mason EA, Marrero TR (1970) The diffusion of atoms and molecules. Adv At Mol Phys 6:155–232. https://doi.org/10.1016/S0065-2199(08)60205-5

    Article  Google Scholar 

  14. Mason EA, Munn RJ, Smith FJ (1966) Thermal diffusion in gases. Adv At Mol Phys 2:33–91. https://doi.org/10.1016/S0065-2199(08)60217-1

    Article  Google Scholar 

  15. Maxwell JC (1866) On the dynamical theory of gases. Philos Trans R Soc 157:49–88

    Google Scholar 

  16. Pavlov AV (1979) Thermal diffusion in the upper atmosphere of the Earth. Geomagn Aeron. 19(6): 707–711 (Translated from Pavlov AV (1979). Geomagnetizm i Aeronomiia 19(6): 1050–1057)

  17. Pavlov AV (1981) Higher approximations to coefficients of diffusion and thermodiffusion in a multicomponent gas mixture. Sov Phys Tech Phys. 26(1): 80–83 (Translated from Pavlov AV (1981) Zhurnal Tekhnicheskoi Fiziki 51(1): 141–147)

  18. Pavlov AV (2019) Diffusion and thermodiffusion of atmospheric neutral gases: a review. Surv Geophys 40(2):247–276. https://doi.org/10.1007/s10712-019-09522-2

    Article  Google Scholar 

  19. Pavlov AV (2020) Correction to: diffusion and thermodiffusion of atmospheric neutral gases: a review. Surv Geophys 41(4):933–933. https://doi.org/10.1007/s10712-020-09589-2

    Article  Google Scholar 

  20. Saxena SC (1955) Higher approximations to diffusion coefficients and determination of force constants. Indian J Phys 29(10):453–460

    Google Scholar 

  21. Saxena SC, Mathur BP (1965) Thermal diffusion in binary gas mixtures and intermolecular forces. Rev Mod Phys 37:316–325. https://doi.org/10.1103/RevModPhys.37.316

    Article  Google Scholar 

  22. Stefan J (1871) Ueber das Gleichgewicht und die Bewegung insbesondere die Diff usion von Gasgemengen. Kais Akad Wiss 63:63–124

    Google Scholar 

  23. Talu O, Myers AL (2001) Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites. Coll Surf, A 187–188:83–93. https://doi.org/10.1016/S0927-7757(01)00628-8

    Article  Google Scholar 

  24. Tipton EL, Tompson RV, Loyalka SK (2009) Chapman-Enskog solutions to arbitrary order in Sonine polynomials III: diffusion, thermal diffusion, and thermal conductivity in a binary, rigid-sphere, gas mixture. Eur J Mech B/fluids 28(3):353–386. https://doi.org/10.1016/j.euromechflu.2008.12.002

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Pavlov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A.V. Thermodiffusion and Diffusion Correction Factors of Neutral Gases in the Earth's Atmosphere. Surv Geophys 42, 989–997 (2021). https://doi.org/10.1007/s10712-021-09647-3

Download citation

Keywords

  • Neutral atmosphere
  • Maxwell–Stefan diffusion equations
  • Multicomponent diffusion
  • Multicomponent thermodiffusion
  • Modeling and forecasting