Failure of the Conventional Expression of Tortuosity in Granular Porous Solids

Abstract

The tortuosity of porous solids has been widely used as a basic concept in understanding the fluid flow capacity of these media. Starting from a geometric expression of the tortuosity, different relationships have been developed over time to estimate it from different perspectives as hydraulic, electrical, and molecular diffusion, making necessary an exhaustive analysis of these developments. In this study, evidences for the lack of the true hydrodynamic sense of the conventional expression of tortuosity are shown. As a first sign of its failures, the disparity of results between the different relationships of tortuosity–porosity derived from this conventional expression is shown. Next, the presentation of several examples directly shows that the value obtained with that conventional expression is the same in cases where the actual tortuosity is obviously different. Likewise, a routine physical analysis of the flow in this study shows that the use of the capillary analogue is erroneous for one-dimensional flow analyses. Another inconsistency has been encountered in the widely used equality between the volumetric porosity and the product of free cross-sectional area by the length representing the path of the fluid through the pores. The last key showing the deficiencies of these estimations of the tortuosity is the constraint of the use of constant section ducts in the electrical analogy. As a new expression of tortuosity, an alternative ratio is proposed which can be included in known hydraulic and electrical relationships, in the same way than the conventional tortuosity. This tortuosity ratio constitutes a rethinking of the knowledge and understanding of flow in granular porous media.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abderrahmene M, Abdelillah B, Fouad G (2017) Electrical prediction of tortuosity in porous media. Energy Proc 139:718–724. https://doi.org/10.1016/j.egypro.2017.11.277

    Article  Google Scholar 

  2. Ahmadi MM, Mohammadi S, Hayati AN (2011) Analytical derivation of tortuosity and permeability of monosized spheres: a volume averaging approach. Phys Rev E 83(2):026312. https://doi.org/10.1103/PhysRevE.83.026312

    Article  Google Scholar 

  3. Archie GE (1942) The electrical resistivity logs as an aid in determining some reservoirs characteristics. Trans Am Inst Min Metall Eng 146:54–62. https://doi.org/10.2118/942054-G

    Article  Google Scholar 

  4. Azar JH, Javaherian A, Pishvaie MR, Nabi-Bidhendi M (2008) An approach to defining tortuosity and cementation factor in carbonate reservoir rocks. J Petrol Sci Eng 60(2):125–131. https://doi.org/10.1016/j.petrol.2007.05.010

    Article  Google Scholar 

  5. Bear J (1972) Dynamics of fluids in porous media. American Elsevier, New York

    Google Scholar 

  6. Beeckman JW (1990) Mathematical description of heterogeneous materials. Chem Eng Sci 45(8):2603–2610. https://doi.org/10.1016/0009-2509(90)80148-8

    Article  Google Scholar 

  7. Berg RR (1970) Method for determining permeability from reservoir rock properties. Trans Gulf Coast Assoc Geol Soc 20:303–317

    Google Scholar 

  8. Burdine NT (1953) Relative permeability calculations from pore size distribution data. Trans AIMMPE 198:71–77. https://doi.org/10.2118/225-G

    Article  Google Scholar 

  9. Cai J, Zhang Z, Wei W, Guo D, Li S, Zhao P (2019) The critical factors for permeability-formation factor relation in reservoir rocks: Pore-throat ratio, tortuosity and connectivity. Energy 188:116051. https://doi.org/10.1016/j.energy.2019.116051

    Article  Google Scholar 

  10. Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(2):262–273. https://doi.org/10.1017/S0021859600051789

    Article  Google Scholar 

  11. Comiti J, Renaud M (1989) A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles. Chem Eng Sci 44(7):1539–1545. https://doi.org/10.1016/0009-2509(89)80031-4

    Article  Google Scholar 

  12. Cornell D, Katz DL (1953) Flow of gases through consolidated porous media. Ind Eng Chem Res 45:2145–2152. https://doi.org/10.1021/ie50526a021

    Article  Google Scholar 

  13. Darcy H (1856) Determination des lois d’ecoulement de l’eau a travers le sable. Les fontaines publique de la ville de Dijon, Appendix, note D, 590–594. Victor Dalmont. Paris.

  14. Dias RP, Mota M, Teixeira JA, Yelshin A (2005) Study of ternary glass spherical particle beds: porosity, tortuosity, and permeability. Filtration 5(1):68–75

    Google Scholar 

  15. Díaz-Curiel J, Biosca B, Miguel MJ (2016) Geophysical estimation of permeability in sedimentary media with porosities from 0 to 50%. Oil Gas Sci Technol. https://doi.org/10.2516/ogst/2014053

    Article  Google Scholar 

  16. Du Plessis JP, Masliyah JH (1991) Flow through isotropic granular porous media. Trans Porous Med 6(3):207–221. https://doi.org/10.1016/0148-9062(92)92282-H

    Article  Google Scholar 

  17. Duda A, Koza Z, Matyka M (2011) Hydraulic tortuosity in arbitrary porous media flow. Phys Rev E 84(3):036319. https://doi.org/10.1103/PhysRevE.84.036319

    Article  Google Scholar 

  18. Dullien FAL (1992) Porous media: Fluid transport and pore structure, 2nd edn. Academic Press, San Diego . https://doi.org/10.1002/aic.690380819

    Book  Google Scholar 

  19. Faris SR, Gournay LS, Lipson LB, Webb TS (1954) Verification of tortuosity equations. AAPG Bull 38:2226

    Google Scholar 

  20. Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77(5):1461–1477. https://doi.org/10.2136/sssaj2012.0435

    Article  Google Scholar 

  21. Glover PWJ, Walker E (2009) Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics 74(1):E17–E29. https://doi.org/10.1190/1.3033217

    Article  Google Scholar 

  22. Goudarzi B, Mohammadmoradi P, Kantzas A (2018) Direct pore-level examination of hydraulic-electric analogy in unconsolidated porous media. J Petrol Sci Eng 165:811–820

    Article  Google Scholar 

  23. Herrick DC, Kennedy WD (1994) Electrical efficiency—a pore geometric theory for interpreting the electrical properties of reservoir rocks. Geophysics 59(6):918–927. https://doi.org/10.1190/1.1443651

    Article  Google Scholar 

  24. Huang J, Xiao F, Dong H, Yin X (2019) Diffusion tortuosity in complex porous media from pore-scale numerical simulations. Comput Fluids 183:66–74. https://doi.org/10.1016/j.compfluid.2019.03.018

    Article  Google Scholar 

  25. Klinkenberg LJ (1951) Analogy between diffusion and electrical conductivity in porous rocks. Bull Geol Soc Am 62(6):559–564. https://doi.org/10.1130/0016-7606(1951)62[559:ABDAEC]2.0.CO;2(1951)

    Article  Google Scholar 

  26. Koponen A, Kataja M, Timonen JV (1996) Tortuous flow in porous media. Phys Rev E 54(1):406. https://doi.org/10.1103/PhysRevE.54.406

    Article  Google Scholar 

  27. Koza Z, Matyka M, Khalili A (2009) Finite-size anisotropy in statistically uniform porous media. Phys Rev E 79(6):066306. https://doi.org/10.1103/PhysRevE.79.066306

    Article  Google Scholar 

  28. Kozeny J (1927) Uber die kapillare leitung des wassers im boden-aufstieg versickerung und anwendung auf die bewässerung. Sitzungsberichte der Wiener Akademie der Wissenschaften, Math.-Naturwiss (Abt. IIa) 136: 271–306.

  29. Lanfrey PY, Kuzeljevic ZV, Dudukovic MP (2010) Tortuosity model for fixed beds randomly packed with identical particles. Chem Eng Sci 65(5):1891–1896. https://doi.org/10.1016/j.ces.2009.11.011

    Article  Google Scholar 

  30. Li Z, Dong M (2010) Experimental study of diffusive tortuosity of liquid-saturated consolidated porous media. Ind Eng Chem Res 49(13):6231–6237. https://doi.org/10.1021/ie901765d

    Article  Google Scholar 

  31. Luo L, Yu B, Cai J, Zeng X (2014) Numerical simulation of tortuosity for fluid flow in two-dimensional pore fractal models of porous media. Fractals 22(04):1450015. https://doi.org/10.1142/S0218348X14500157

    Article  Google Scholar 

  32. Matyka M, Koza Z (2012) How to calculate tortuosity easily? In: AIP conference proceedings 4 (1453): 17-22. AIP. https://doi.org/10.1063/1.4711147

  33. Matyka M, Khalili A, Koza Z (2008) Tortuosity-porosity relation in porous media flow. Phys Rev E 78(2):026306. https://doi.org/10.1103/PhysRevE.78.026306

    Article  Google Scholar 

  34. Mauret E, Renaud M (1997) Transport phenomena in multi-particle systems—I. Limits of applicability of capillary model in high voidage beds-application to fixed beds of fibers and fluidized beds of spheres. Chem Eng Sci 52(11):1807–1817. https://doi.org/10.1016/S0009-2509(96)00499-X

    Article  Google Scholar 

  35. Maxwell JC (1881) A treatise on electricity and magnetism, vol 1. Clarendon Press, Oxford

    Google Scholar 

  36. MB Clennell 1997 Tortuosity: a guide through the maze Geological Society, London 122(1):299–344 https://doi.org/10.1144/GSL.SP.1997.122.01.18

  37. Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207. https://doi.org/10.1039/TF9615701200

    Article  Google Scholar 

  38. Mota M, Teixeira JA, Bowen WR, Yelshin A (2001) Binary spherical particle mixed beds: porosity and permeability relationship measurement. Trans Filt Soc 1(4):101–106

    Google Scholar 

  39. Nemati R, Shahrouzi JR, Alizadeh R (2020) A stochastic approach for predicting tortuosity in porous media via pore network modeling. Comput Geotech 120:103406. https://doi.org/10.1016/j.compgeo.2019.103406

    Article  Google Scholar 

  40. Penman HL (1940) Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids. J. Agric. Sci. 30(3):437–462. https://doi.org/10.1017/S0021859600048164

    Article  Google Scholar 

  41. Poiseuille JL (1844) Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres. Imprimerie Royale

  42. Raiga-Clemenceau J, Imbert P (1984) Définition d'un index de perméabilité à partir des réponses diagraphiques de résistivité et porosité. Approche systématique. In Colloque international de diagraphies

  43. Rose WD, Wyllie MRJ (1949) A note on the theoretical description of wetting liquid relative permeability data. J Pet Technol 1(09):45–45. https://doi.org/10.2118/949929-G

    Article  Google Scholar 

  44. Salem HS, Chilingarian GV (2000) Physical and mathematical aspects of tortuosity in regard to the fluid flow and electric current in porous media; Example of the Hibernia and Terra Nova reservoirs off the eastern coast of Canada. Energy Sour 22:137–145. https://doi.org/10.1080/00908310050014117

    Article  Google Scholar 

  45. Shen L, Chen Z (2007) Critical review of the impact of tortuosity on diffusion. Chem Eng Sci 62(14):3748–3755. https://doi.org/10.1016/j.ces.2007.03.041

    Article  Google Scholar 

  46. Sun Z, Tang X, Cheng G (2013) Numerical simulation for tortuosity of porous media. Microporous Mesoporous Mater 173:37–42. https://doi.org/10.1016/j.micromeso.2013.01.035

    Article  Google Scholar 

  47. Sundberg K (1932) Effect of Impregnating Waters on Electrical Conductivity of Soils and Rocks. Trans. A.I.M.E., Geophys. Prospect.: 367–391.

  48. Valdés-Parada FJ, Porter ML, Wood BD (2011) The role of tortuosity in upscaling. Trans Porous Med 88(1):1–30. https://doi.org/10.1007/s11242-010-9613-9

    Article  Google Scholar 

  49. Van Brakel J, Heertjes PM (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transf 17(9):1093–1103. https://doi.org/10.1016/0017-9310(74)90190-2

    Article  Google Scholar 

  50. Weissberg HL (1963) Effective diffusion coefficient in porous media. J Appl Phys 34(9):2636–2639. https://doi.org/10.1063/1.1729783

    Article  Google Scholar 

  51. Winsauer WO, Shearin H, Masson P, Williams M (1952) Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bull 2:253–277. https://doi.org/10.1306/3D9343F4-16B1-11D7-8645000102C1865D

    Article  Google Scholar 

  52. Wyllie MRJ, Rose WD (1950) Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. Trans Am Inst Min Metall Eng 189:105–118. https://doi.org/10.2118/950105-G

    Article  Google Scholar 

  53. Wyllie MRJ, Spangler MB (1952) Application of electrical resistivity measurements to problem of fluid flow in porous media. AAPG Bull 36(2):359–403. https://doi.org/10.1306/3D934403-16B1-11D7-8645000102C1865D

    Article  Google Scholar 

Download references

Acknowledgments

Part of this study was supported by “Comunidad de Madrid” Regional Government of Madrid Spain (CARESOIL-CM P2018/EMT-4317) and by “Ministerio de Economía y Competitividad” Government of Spain (DENSOIL CTM2016-77151-C2-2-R).

Funding

Part of this study was supported by “Comunidad de Madrid” Regional Government of Madrid Spain (CARESOIL-CM P2018/EMT-4317) and by “Ministerio de Economía y Competitividad” Government of Spain (DENSOIL CTM2016-77151-C2-2-R).

Author information

Affiliations

Authors

Contributions

J. Díaz-Curiel had the idea for the article and drafted the work, J. Díaz-Curiel, B. Biosca and L. Arévalo-Lomas performed the literature search, J. Díaz-Curiel and M.J. Miguel performed the data analysis and B. Biosca, L. Arévalo-Lomas and M.J. Miguel critically revised the work.

Corresponding author

Correspondence to J. Díaz-Curiel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Díaz-Curiel, J., Biosca, B., Arévalo-Lomas, L. et al. Failure of the Conventional Expression of Tortuosity in Granular Porous Solids. Surv Geophys 42, 943–960 (2021). https://doi.org/10.1007/s10712-021-09645-5

Download citation

Keywords

  • Tortuosity
  • Porosity
  • Capillary model
  • Electrical analogy
  • Surface porosity