Skip to main content

Climatology of Transient Luminous Events and Lightning Observed Above Europe and the Mediterranean Sea

Abstract

In 1999, the first sprites were observed above European thunderstorms using sensitive cameras. Since then, Eurosprite campaigns have been conducted to observe sprites and other transient luminous events (TLEs), expanding into a network covering large parts of Europe and coastal areas. In 2009 through 2013, the number of optical observations of TLEs reached a peak of 2000 per year. Because of this unprecedented number of European observations, it was possible to construct a climatology of 8394 TLEs observed above 1018 thunderstorm systems and study for the first time their distribution and seasonal cycle above Europe and parts of the Mediterranean Sea. The number of TLEs per thunderstorm was found to follow a power law, with less than 10 TLEs for 801 thunderstorms and up to 195 TLEs above the most prolific one. The majority of TLEs were classified as sprites, 641 elves, 280 halos, 70 upward lightning, 2 blue jets and 1 gigantic jet. The climatology shows intense TLE activity during summer over continental areas and in late autumn over coastal areas and sea. The two seasons peak, respectively, in August and November, separated by March and April with almost no TLEs, and a relative minimum around September. The observed TLE activity, i.e. mostly sprites, is shown to be largely consistent with lightning activity, with a 1/1000 of observed TLE-to-lightning ratio in regions with most observations. The overall behaviour is consistent among individual years, making the observed seasonal cycle a robust general feature of TLE activity above Europe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abarca SF, Corbosiero KL, Galarneau TJ (2010) An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J Geophys Res (Atmos) 115:D18206. https://doi.org/10.1029/2009JD013411

    Article  Google Scholar 

  2. Adachi T, Fukunishi H, Takahashi Y, Sato M, Ohkubo A, Yamamoto K (2005) Characteristics of thunderstorm systems producing winter sprites in Japan. J Geophys Res (Atmos) 110:D11203. https://doi.org/10.1029/2004JD005012

    Article  Google Scholar 

  3. Arnone E, Dinelli B (2016) chap. CHIMTEA—-Chemical Impact of Thunderstorms on Earth’s Atmosphere. In: Remote sensing advances for Earth system science, vol. XIII of Springer Earth System Sciences. Springer, Berlin, pp 1–14. https://doi.org/10.1007/978-3-319-16952-1_1

    Google Scholar 

  4. Arnone E, Hauchecorne A (2012) Stratosphere \(\text{ NO }_{ y }\) Species measured by MIPAS and GOMOS onboard ENVISAT during 2002–2010: influence of plasma processes onto the observed distribution and variability. Space Sci Rev 168:315–332. https://doi.org/10.1007/s11214-011-9861-1

    Article  Google Scholar 

  5. Arnone E, Berg P, Arnold NF, Christiansen B, Thejll P (2008a) An estimate of the impact of transient luminous events on the atmospheric temperature. Adv Geosci 13:37–43. https://doi.org/10.5194/adgeo-13-37-2008

    Article  Google Scholar 

  6. Arnone E, Berg P, Boberg F, Bór J, Chanrion O, Enell C-F, Ignaccolo M, Mika Á, Odzimek A, van der Velde O, Farges T, Laursen S, Neubert T, Sátori G (2008b) The Eurosprite 2005 campaign. In: Arvelius J (ed) Proceedings of the 33rd annual European meeting on Atmospheric Studies by Optical Methods (33AM)

  7. Arnone E, Kero A, Dinelli BM, Enell C-F, Arnold NF, Papandrea E, Rodger CJ, Carlotti M, Ridolfi M, Turunen E (2008c) Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2. Geophys Res Lett 35:L05807. https://doi.org/10.1029/2007GL031791

    Article  Google Scholar 

  8. Arnone E, Kero A, Enell C-F, Carlotti M, Rodger CJ, Papandrea E, Arnold NF, Dinelli BM, Ridolfi M, Turunen E (2009) Seeking sprite-induced signatures in remotely sensed middle atmosphere NO2: latitude and time variations. Plasma Sources Sci Technol 18:034014. https://doi.org/10.1088/0963-0252/18/3/034014

    Article  Google Scholar 

  9. Arnone E, Smith AK, Enell C-F, Kero A, Dinelli BM (2014) WACCM climate chemistry sensitivity to sprite perturbations. J Geophys Res (Atmos) 119:6958–6970. https://doi.org/10.1002/2013JD020825

    Article  Google Scholar 

  10. Arnone E, Bor J, Chanrion O, Barta V, Fullekrug M, Labanti R, Mezuman K, Odzimek A, Popek M, Soula S, Valeri D, van der Velde O, Yair Y, Zanotti F, Zoladek P, Neubert T (2019) The Eurosprite 2009–2013 catalogue (Version 1.3) [DataSet]. https://doi.org/10.5281/zenodo.3480108

  11. Barrington Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106:1741–1750

    Article  Google Scholar 

  12. Barta V, Haldoupis C, Sátori G, Buresova D, Chum J, Pozoga M, Berényi KA, Bór J, Popek M, Kis Á, Bencze P (2017) Searching for effects caused by thunderstorms in midlatitude sporadic E layers. J Atmos Sol-Terr Phys 161:150–159. https://doi.org/10.1016/j.jastp.2017.06.006

    Article  Google Scholar 

  13. Betz HD, Schmidt K, Laroche P, Blanchet P, Oettinger WP, Defer E, Dziewit Z, Konarski J (2009) LINET—an international lightning detection network in Europe. Atmos Res 91:564–573. https://doi.org/10.1016/j.atmosres.2008.06.012

    Article  Google Scholar 

  14. Blanc E, Lefeuvre F, Roussel-Dupré R, Sauvaud JA (2007) TARANIS: a microsatellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere, the ionosphere, and the magnetosphere. Adv Space Res 40:1268–1275. https://doi.org/10.1016/j.asr.2007.06.037

    Article  Google Scholar 

  15. Boeck WL, Vaughan OH Jr, Blakeslee R, Vonnegut B, Brook M (1992) Lightning induced brightening in the airglow layer. Geophys Res Lett 19:99–102. https://doi.org/10.1029/91GL03168

    Article  Google Scholar 

  16. Boeck WL, Vaughan OH, Blakeslee RJ, Vonnegut B, Brook M, McKune J (1995) Observations of lightning in the stratosphere. J Geophys Res 100:1465–1476. https://doi.org/10.1029/94JD02432

    Article  Google Scholar 

  17. Bór J (2013) Optically perceptible characteristics of sprites observed in Central Europe in 2007–2009. J Atmos Sol-Terr Phys 92:151–177. https://doi.org/10.1016/j.jastp.2012.10.008

    Article  Google Scholar 

  18. Bór J, Sátori G, Betz HD (2009) Observation of TLEs in Central Europe from Hungary supported by LINET. In: American Institute of Physics Conference Series, vol 1118 of American Institute of Physics Conference Series, pp 73–83. https://doi.org/10.1063/1.3137716

  19. Bór J, Zelkó Z, Hegedüs T, Jäger Z, Mlynarczyk J, Popek M, Betz HD (2018) On the series of +CG lightning strokes in dancing sprite events. J Geophys Res (Atmos) 123:11. https://doi.org/10.1029/2017JD028251

    Article  Google Scholar 

  20. Chanrion O, Neubert T (2010) Production of runaway electrons by negative streamer discharges. J Geophys Res (Space Phys) 115:A00E32. https://doi.org/10.1029/2009JA014774

    Article  Google Scholar 

  21. Chanrion O, Crosby NB, Arnone E, Boberg F, van der Velde O, Odzimek A, Mika Á, Enell C-F, Berg P, Ignaccolo M, Steiner RJ, Laursen S, Neubert T (2007) The EuroSprite2005 Observational Campaign: an example of training and outreach opportunities for CAL young scientists. Adv Geosci 13:3–9

    Article  Google Scholar 

  22. Chen AB, Kuo C-L, Lee Y-J, Su H-T, Hsu R-R, Chern J-L, Frey HU, Mende SB, Takahashi Y, Fukunishi H, Chang Y-S, Liu T-Y, Lee L-C (2008) Global distributions and occurrence rates of transient luminous events. J Geophys Res (Space Phys) 113:A08306. https://doi.org/10.1029/2008JA013101

    Article  Google Scholar 

  23. Cummer SA, Li J, Han F, Lu G, Jaugey N, Lyons WA, Nelson TE (2009) Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet. Nat Geosci 2:617–620. https://doi.org/10.1038/ngeo607

    Article  Google Scholar 

  24. Ebert U, Montijn C, Briels TMP, Hundsdorfer W, Meulenbroek B, Rocco A, van Veldhuizen EM (2006) The multiscale nature of streamers. Plasma Sources Sci Technol 15:118. https://doi.org/10.1088/0963-0252/15/2/S14

    Article  Google Scholar 

  25. Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E (2010) Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J Geophys Res (Space Phys) 115:A00E43. https://doi.org/10.1029/2009JA014867

    Article  Google Scholar 

  26. Enell C-F, Arnone E, Chanrion O, Adachi T, Verronen PT, Seppälä A, Neubert T, Ulich T, Turunen E, Takahashi Y, Hsu R-R (2008) Parameterisation of the chemical effect of sprites in the middle atmosphere. Ann Geophys 26:13–27

    Article  Google Scholar 

  27. Farges T, Blanc E (2010) Characteristics of infrasound from lightning and sprites near thunderstorm areas. J Geophys Res (Space Phys) 115:A00E31. https://doi.org/10.1029/2009JA014700

    Article  Google Scholar 

  28. Farges T, Blanc E (2011) Lightning and TLE electric fields and their impact on the ionosphere. C R Phys 12:171–179. https://doi.org/10.1016/j.crhy.2011.01.013

    Article  Google Scholar 

  29. Farges T, Blanc E, Le Pichon A, Neubert T, Allin TH (2005) Identification of infrasound produced by sprites during the Sprite 2003 campaign. Geophys Res Lett 32:1813

    Article  Google Scholar 

  30. Farges T, Blanc E, Tanguy M (2007) Experimental evidence of D region heating by lightning-induced electromagnetic pulses on MF radio links. J Geophys Res (Space Phys) 112:A10302. https://doi.org/10.1029/2007JA012285

    Article  Google Scholar 

  31. Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51

    Article  Google Scholar 

  32. Fukunishi H, Takahashi Y, Kubota M, Sakanoi K (1996) Elves: lightning induced transient luminous events in the lower ionosphere. Geophys Res Lett 23:2157

    Article  Google Scholar 

  33. Füllekrug M, Reising SC (1998) Excitation of Earth-ionosphere cavity resonances by sprite-associated lightning flashes. Geophys Res Lett 25:4145–4148. https://doi.org/10.1029/1998GL900133

    Article  Google Scholar 

  34. Füllekrug M, Price C, Yair Y, Williams ER (2002) Intense oceanic lightning. Ann Geophys 20:133–137. https://doi.org/10.5194/angeo-20-133-2002

    Article  Google Scholar 

  35. Füllekrug M, Mareev EA, Rycroft MJ eds (2006) Sprites, elves and intense lightning discharges, vol. 225 of NATO Science Series II. In: Mathematics, physics and chemistry, Springer, Berlin, ISBN 1-4020-4628-6

  36. Füllekrug M, Roussel-Dupré R, Symbalisty EMD, Chanrion O, Odzimek A, van der Velde O, Neubert T (2010) Relativistic runaway breakdown in low-frequency radio. J Geophys Res (Space Phys) 115:A00E09

    Google Scholar 

  37. Füllekrug M, Roussel-Dupré R, Symbalisty EMD, Colman JJ, Chanrion O, Soula S, van der Velde O, Odzimek A, Bennett AJ, Pasko VP, Neubert T (2011) Relativistic electron beams above thunderclouds. Atmos Chem Phys 11:7747–7754. https://doi.org/10.5194/acp-11-7747-2011

    Article  Google Scholar 

  38. Füllekrug M, Kolmasova I, Santolik O, Farges T, Bór J, Bennett A, Parrot M, Rison W, Zanotti F, Arnone E, Mezentsev A, Lan R, Uhlir L, Harrison G, Soula S, van der Velde O, Pinçon J-L, Helling C, Diver D (2013a) Electron acceleration above thunderclouds. Environ Res Lett 8:035027. https://doi.org/10.1088/1748-9326/8/3/035027

    Article  Google Scholar 

  39. Füllekrug M, Mezentsev A, Soula S, Velde O, Farges T (2013b) Sprites in low-frequency radio noise. Geophys Res Lett 40:2395–2399. https://doi.org/10.1002/grl.50408

    Article  Google Scholar 

  40. Ganot M, Yair Y, Price C, Ziv B, Sherez Y, Greenberg E, Devir A, Yaniv R (2007) First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean. Geophys Res Lett 34:L12801. https://doi.org/10.1029/2007GL029258

    Article  Google Scholar 

  41. Gjesteland T, Østgaard N, Laviola S, Miglietta MM, Arnone E, Marisaldi M, Fuschino F, Collier AB, Fabró F, Montanya J (2015) Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin. J Geophys Res (Atmos) 120:12. https://doi.org/10.1002/2015JD023704

    Article  Google Scholar 

  42. Gordillo-Vázquez FJ (2008) Air plasma kinetics under the influence of sprites. J Phys D Appl Phys 41:234016. https://doi.org/10.1088/0022-3727/41/23/234016

    Article  Google Scholar 

  43. Gordillo-Vázquez FJ, Luque A, Simek M (2011) Spectrum of sprite halos. J Geophys Res Space Phys 116:A09319. https://doi.org/10.1029/2011JA016652

    Article  Google Scholar 

  44. Gordillo-Vázquez FJ, Passas M, Luque A, Sánchez J, van der Velde OA, Montanyá J (2018) High spectral resolution spectroscopy of sprites: a natural probe of the mesosphere. J Geophys Res (Atmos) 123:2336–2346. https://doi.org/10.1002/2017JD028126

    Article  Google Scholar 

  45. Greenberg E, Price C (2004) A global lightning location algorithm based on the electromagnetic signature in the Schumann resonance band. J Geophys Res (Atmos) 109:D21111

    Article  Google Scholar 

  46. Greenberg E, Price C, Yair Y, Haldoupis C, Chanrion O, Neubert T (2009) ELF/VLF signatures of sprite-producing lightning discharges observed during the 2005 EuroSprite campaign. J Atmos Sol-Terr Phys 71:1254–1266. https://doi.org/10.1016/j.jastp.2009.05.005

    Article  Google Scholar 

  47. Haldoupis C, Neubert T, Inan US, Mika A, Allin TH, Marshall RA (2004) Subionospheric early VLF signal perturbations observed in one-to-one association with sprites. J Geophys Res (Space Phys) 109:A10303. https://doi.org/10.1029/2004JA010651

    Article  Google Scholar 

  48. Haldoupis C, Steiner RJ, Mika Á, Shalimov S, Marshall RA, Inan US, Bösinger T, Neubert T (2006) “Early/slow” events: a new category of VLF perturbations observed in relation with sprites. J Geophys Res (Space Phys) 111:A11321. https://doi.org/10.1029/2006JA011960

    Article  Google Scholar 

  49. Haldoupis C, Amvrosiadi N, Cotts BRT, van der Velde OA, Chanrion O, Neubert T (2010) More evidence for a one-to-one correlation between Sprites and Early VLF perturbations. J Geophys Res (Space Phys) 115:A07304. https://doi.org/10.1029/2009JA015165

    Article  Google Scholar 

  50. Haldoupis C, Cohen M, Cotts B, Arnone E, Inan U (2012) Long-lasting D-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs. Geophys Res Lett 39:L16801. https://doi.org/10.1029/2012GL052765

    Article  Google Scholar 

  51. Haldoupis C, Cohen M, Arnone E, Cotts B, Dietrich S (2013) The VLF fingerprint of elves: step-like and long-recovery early VLF perturbations caused by powerful CG lightning EM pulses. J Geophys Res (Space Phys) 118:5392–5402

    Article  Google Scholar 

  52. Ignaccolo M, Farges T, Mika A, Allin TH, Chanrion O, Blanc E, Fraser-Smith AC, Füllekrug M (2006) The planetary rate of sprite events. Geophys Res Lett 33:L11808. https://doi.org/10.1029/2005GL025502

    Article  Google Scholar 

  53. Ignaccolo M, Farges T, Blanc E, Füllekrug M (2008) Automated chirp detection with diffusion entropy: application to infrasound from sprites. Chaos Solitons Fractals 38:1039–1050. https://doi.org/10.1016/j.chaos.2007.02.011

    Article  Google Scholar 

  54. Inan US, Barrington-Leigh C, Hansen S, Glukhov VS, Bell TF, Rairden R (1997) Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘elves’. Geophys Res Lett 24:583–586. https://doi.org/10.1029/97GL00404

    Article  Google Scholar 

  55. Iwański R, Odzimek A, Clausen L, Kanawade V, Cnossen I, Edberg N (2009) Meteorological study of the first observation of red sprites from Poland. Acta Geophys 57:760–777. https://doi.org/10.2478/s11600-009-0008-7

    Article  Google Scholar 

  56. Krehbiel PR, Riousset JA, Pasko VP, Thomas RJ, Rison W, Stanley MA, Edens HE (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1:233. https://doi.org/10.1038/ngeo162

    Article  Google Scholar 

  57. Kułak A, Młynarczyk J (2011) A new technique for reconstruction of the current moment waveform related to a gigantic jet from the magnetic field component recorded by an ELF station. Radio Sci 46:RS2016. https://doi.org/10.1029/2010RS004475

    Article  Google Scholar 

  58. Lefeuvre F, Blanc E, Pinçon J-L, Roussel-Dupré R, Lawrence D, Sauvaud J-A, Rauch J-L, de Feraudy H, Lagoutte D (2008) TARANIS—a satellite project dedicated to the physics of TLEs and TGFs. Space Sci Rev 137:301–315. https://doi.org/10.1007/s11214-008-9414-4

    Article  Google Scholar 

  59. Liszka L, Hobara Y (2006) Sprite-attributed infrasonic chirps—their detection, occurrence and properties between 1994 and 2004. J Atmos Sol-Terr Phys 68:1179–1188

    Article  Google Scholar 

  60. Luque A, Ebert U (2009) Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nature Geosci 2:757–760. https://doi.org/10.1038/ngeo662

    Article  Google Scholar 

  61. Lyons A (1994) Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys Res Lett 21:875–878

    Article  Google Scholar 

  62. Lyons WA (1996) Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J Geophys Res 101:29641–29652

    Article  Google Scholar 

  63. Mäkelä A, Kantola T, Yair Y, Raita T (2010) Observations of TLEs above the Baltic sea on Oct 9 2009. Geophysica 46:79–90

    Google Scholar 

  64. Mika Á, Haldoupis C, Marshall RA, Neubert T, Inan US (2005) Subionospheric VLF signatures and their association with sprites observed during EuroSprite-2003. J Atmos Sol-Terr Phys 67:1580–1597. https://doi.org/10.1016/j.jastp.2005.08.011

    Article  Google Scholar 

  65. Mika Á, Haldoupis C, Neubert T, Su HT, Hsu RR, Steiner RJ, Marshall RA (2006) Early VLF perturbations observed in association with elves. Ann Geophys 24:2179–2189

    Article  Google Scholar 

  66. Mlynarczyk J, Bór J, Kulak A, Popek M, Kubisz J (2015) An unusual sequence of sprites followed by a secondary TLE: an analysis of ELF radio measurements and optical observations. J Geophys Res (Space Phys) 120:2241–2254. https://doi.org/10.1002/2014JA020780

    Article  Google Scholar 

  67. Montanyà J, van der Velde O, Romero D, March V, Solà G, Pineda N, Arrayas M, Trueba JL, Reglero V, Soula S (2010) High-speed intensified video recordings of sprites and elves over the western Mediterranean Sea during winter thunderstorms. J Geophys Res (Atmos) 115:A00E18. https://doi.org/10.1029/2009JA014508

    Article  Google Scholar 

  68. NaitAmor S, AlAbdoadaim MA, Cohen MB, Cotts BRT, Soula S, Chanrion O, Neubert T, Abdelatif T (2010) VLF observations of ionospheric disturbances in association with TLEs from the EuroSprite-2007 campaign. J Geophys Res (Space Phys) 115:A00E47. https://doi.org/10.1029/2009JA015026

    Article  Google Scholar 

  69. Neubert T (2003) On sprites and their exotic kin. Science 300:747–749

    Article  Google Scholar 

  70. Neubert T (2009) ASIM—an Instrument Suite for the International Space Station. In: American Institute of Physics Conference Series, vol. 1118 of American Institute of Physics Conference Series, pp 8–12. https://doi.org/10.1063/1.3137718

  71. Neubert T, Chanrion O (2013) On the electric breakdown field of the mesosphere and the influence of electron detachment. Geophys Res Lett 40:2373–2377. https://doi.org/10.1002/grl.50433

    Article  Google Scholar 

  72. Neubert T, Allin TH, Stenbaek-Nielsen H, Blanc E (2001) Sprites over Europe. Geophys Res Lett 28:3585–3588

    Article  Google Scholar 

  73. Neubert T, Allin TH, Blanc E, Farges T, Haldoupis C, Mika A, Soula S, Knutsson L, van der Velde O, Marshall RA, Inan U, Sátori G, Bór J, Hughes A, Collier A, Laursen S, Rasmussen I (2005) Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign. J Atmos Sol-Terr Phys 67:807–820. https://doi.org/10.1016/j.jastp.2005.02.004

    Article  Google Scholar 

  74. Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C-F, Turunen E, Bösinger T, Mika Á, Haldoupis C, Steiner RJ, van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Füllekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71. https://doi.org/10.1007/s10712-008-9043-1

    Article  Google Scholar 

  75. Neubert T, Chanrion O, Arnone E, Zanotti F, Cummer S, Li J, Füllekrug M, Soula S, van der Velde O (2011) The properties of a gigantic jet reflected in a simultaneous sprite: observations interpreted by a model. J Geophys Res (Space Phys) 116:A12329. https://doi.org/10.1029/2011JA016928

    Article  Google Scholar 

  76. Neubert T, Østgaard N, Reglero V, Blanc E, Chanrion O, Oxborrow CA, Orr A, Tacconi M (2019) The ASIM mission on the International Space Station. Space Sci Rev 215:26. https://doi.org/10.1007/s11214-019-0592-z

    Article  Google Scholar 

  77. Newsome RT, Inan US (2010) Free-running ground-based photometric array imaging of transient luminous events. J Geophys Res (Space Phys) 115:A00E41

    Google Scholar 

  78. Odzimek A, Clausen LBN, Kanawade V, Cnossen I, Edberg NJT, Faedi F, Del Moro A, Ural U, Byckling K, Krzaczkowski P, Iwański R, Struzik P, Pajek M, Gajda W (2008) SPARTAN Sprite-Watch 2007 Campaign. In: Choliy VY, Ivashchenko G (eds) Young scientists 15th proceedings, pp 64–67

  79. Parra-Rojas FC, Luque A, Gordillo-VáZquez FJ (2013) Chemical and electrical impact of lightning on the Earth mesosphere: the case of sprite halos. J Geophys Res (Space Phys) 118:5190–5214. https://doi.org/10.1002/jgra.50449

    Article  Google Scholar 

  80. Parra-Rojas FC, Luque A, Gordillo-Vázquez FJ (2015) Chemical and thermal impacts of sprite streamers in the Earth’s mesosphere. J Geophys Res (Space Phys) 120:8899–8933

    Article  Google Scholar 

  81. Pasko VP (2008) Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys Controll Fusion 50:124050. https://doi.org/10.1088/0741-3335/50/12/124050

    Article  Google Scholar 

  82. Pasko VP (2010) Recent advances in theory of transient luminous events. J Geophys Res (Space Phys) 115:A00E35

    Google Scholar 

  83. Pasko VP, Inan US, Bell TF (1997) Sprite as evidence of vertical gravity wave structures above mesoscale thunderstorms. Geophys Res Lett 24:1735–1738

    Article  Google Scholar 

  84. Pasko VP, Inan US, Bell TF (1998) Spatial structure of sprites. Geophys Res Lett 25:2123–2126

    Article  Google Scholar 

  85. Pasko VP, Stanley MA, Mathews JD, Inan US, Wood TG (2002) Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416:152–154

    Article  Google Scholar 

  86. Pasko VP, Yair Y, Kuo CL (2011) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci Rev. https://doi.org/10.1007/s11214-011-9813-9

    Article  Google Scholar 

  87. Pérez-Invernón FJ, Luque A, Gordillo-Vázquez FJ (2018a) Modeling the chemical impact and the optical emissions produced by lightning-induced electromagnetic fields in the upper atmosphere: the case of halos and elves triggered by different lightning discharges. J Geophys Res (Atmos) 123:7615–7641. https://doi.org/10.1029/2017JD028235

    Article  Google Scholar 

  88. Pérez-Invernón FJ, Luque A, Gordillo-Vázquez FJ, Sato M, Ushio T, Adachi T, Chen AB (2018b) Spectroscopic diagnostic of halos and elves detected from space-based photometers. J Geophys Res (Atmos) 123:12917–12941. https://doi.org/10.1029/2018JD029053

    Article  Google Scholar 

  89. Pérez-Invernón FJ, Gordillo-Vázquez FJ, Smith AK, Arnone E, Winkler H (2019) Global occurrence and chemical impact of stratospheric blue jets modeled with WACCM4. J Geophys Res (Atmos) 124:2841–2864. https://doi.org/10.1029/2018JD029593

    Article  Google Scholar 

  90. Petrov NI, Petrova GN (1999) Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere. J Tech Phys 44:472–475. https://doi.org/10.1134/1.1259327

    Article  Google Scholar 

  91. Pinto CMA, Mendes Lopes A, Machado JAT (2012) A review of power laws in real life phenomena. Commun Nonlinear Sci Numer Simul 17:3558–3578. https://doi.org/10.1016/j.cnsns.2012.01.013

    Article  Google Scholar 

  92. Price C, Asfur M, Lyons W, Nelson T (2002) An improved ELF/VLF method for globally geolocating sprite-producing lightning. Geophys Res Lett 29:1031. https://doi.org/10.1029/2001GL013519

    Article  Google Scholar 

  93. Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37:317–336

    Article  Google Scholar 

  94. Rodger CJ, Werner S, Brundell J, Thomson NR, Lay E, Holzworth R, Dowden R (2006) Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study. Ann Geophys 24:3197–3214

    Article  Google Scholar 

  95. Rudlosky SD, Shea DT (2013) Evaluating WWLLN performance relative to TRMM/LIS. Geophys Res Lett 40:2344–2348. https://doi.org/10.1002/grl.50428

    Article  Google Scholar 

  96. Rycroft MJ, Harrison RG (2011) Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit. Space Sci Rev. https://doi.org/10.1007/s11214-011-9830-8

    Article  Google Scholar 

  97. Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res (Space Phys) 115:A00E37. https://doi.org/10.1029/2009JA014758

    Article  Google Scholar 

  98. Rycroft MJ, Odzimek A, Arnold NF, Füllekrug M, Kułak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites. J Atmos Sol-Terr Phys 69:2485–2509. https://doi.org/10.1016/j.jastp.2007.09.004

    Article  Google Scholar 

  99. Sátori G, Neska M, Williams E, Szendrői J (2007) Signatures of the day-night asymmetry of the Earth-ionosphere cavity in high time resolution Schumann resonance records. Radio Sci 42:RS2S10. https://doi.org/10.1029/2006RS003483

    Article  Google Scholar 

  100. Sátori G, Rycroft M, Bencze P, Märcz F, Bór J, Barta V, Nagy T, Kovács K (2013) An overview of thunderstorm-related research on the atmospheric electric field, Schumann resonances, sprites, and the ionosphere at Sopron, Hungary. Surv Geophys 34:255–292. https://doi.org/10.1007/s10712-013-9222-6

    Article  Google Scholar 

  101. Savtchenko A, Mitzeva R, Tsenova B, Kolev S (2009) Analysis of lightning activity in two thunderstorm systems producing sprites in France. J Atmos Sol-Terr Phys 71:1277–1286. https://doi.org/10.1016/j.jastp.2009.04.010

    Article  Google Scholar 

  102. Sentman DD, Wescott EM (1993) Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys Res Lett 20:2857–2860

    Article  Google Scholar 

  103. Sentman DD, Wescott EM, Osborne DL, Hampton DL, Heavner MJ (1995) Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys Res Lett 22:1205–1208

    Article  Google Scholar 

  104. Smith DM, Lopez LI, Lin RP, Barrington-Leigh CP (2005) Terrestrial gamma-ray flashes observed up to 20 MeV. Science 307:1085–1088. https://doi.org/10.1126/science.1107466

    Article  Google Scholar 

  105. Soula S, van der Velde O, Palmiéri J, Chanrion O, Neubert T, Montanyà J, Gangneron F, Meyerfeld Y, Lefeuvre F, Lointier G (2010) Characteristics and conditions of production of transient luminous events observed over a maritime storm. J Geophys Res (Atmos) 115:D16118. https://doi.org/10.1029/2009JD012066

    Article  Google Scholar 

  106. Soula S, Iacovella F, van der Velde O, Montanyà J, Füllekrug M, Farges T, Bór J, Georgis J-F, NaitAmor S, Martin J-M (2014) Multi-instrumental analysis of large sprite events and their producing storm in southern France. Atmos Res 135:415–431

    Article  Google Scholar 

  107. Soula S, Defer E, Füllekrug M, van der Velde O, Montanya J, Bousquet O, Mlynarczyk J, Coquillat S, Pinty J-P, Rison W, Krehbiel PR, Thomas R, Pedeboy S (2015) Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign. J Geophys Res (Atmos) 120:11. https://doi.org/10.1002/2015JD023894

    Article  Google Scholar 

  108. Soula S, Mlynarczyk J, Füllekrug M, Pineda N, Georgis J-F, van der Velde O, Montanyà J, Fabró F (2017) Dancing sprites: detailed analysis of two case studies. J Geophys Res (Atmos) 122:3173–3192. https://doi.org/10.1002/2016JD025548

    Article  Google Scholar 

  109. Stanley M, Brook M, Krehbiel P, Cummer SA (2000) Detection of daytime sprites via a unique sprite ELF signature. Geophys Res Lett 27:871–874. https://doi.org/10.1029/1999GL010769

    Article  Google Scholar 

  110. Stenbaek-Nielsen HC, Moudry DR, Wescott EM, Sentman DD, Sabbas FTS (2000) Sprites and possible mesospheric effects. Geophys Res Lett 27:3829–3832

    Article  Google Scholar 

  111. Stenbaek-Nielsen HC, Haaland R, McHarg MG, Hensley BA, Kanmae T (2010) Sprite initiation altitude measured by triangulation. J Geophys Res (Space Phys) 115:A00E12

    Google Scholar 

  112. Su HT, Hsu RR, Chen AB, Wang YC, Hsiao WS, Lai WC, Lee LC, Sato M, Fukunishi H (2003) Gigantic jets between a thundercloud and the ionosphere. Nature 423:974–976

    Article  Google Scholar 

  113. Suzuki T, Hayakawa M, Michimoto K (2011) Small Winter thunderstorm with sprites and strong positive discharge. IEEJ Trans Fundam Mater 131:723–728. https://doi.org/10.1541/ieejfms.131.723

    Article  Google Scholar 

  114. Taylor MJ, Bailey MA, Pautet PD, Cummer SA, Jaugey N, Thomas JN, Solorzano NN, Sao Sabbas F, Holzworth RH, Pinto O, Schuch NJ (2008) Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina. Geophys Res Lett 35:L14812. https://doi.org/10.1029/2008GL033984

    Article  Google Scholar 

  115. Vadislavsky E, Yair Y, Erlick C, Price C, Greenberg E, Yaniv R, Ziv B, Reicher N, Devir A (2009) Indication for circular organization of column sprite elements associated with Eastern Mediterranean winter thunderstorms. J Atmos Sol-Terr Phys 71:1835–1839. https://doi.org/10.1016/j.jastp.2009.07.001

    Article  Google Scholar 

  116. van der Velde OA, Montanyà J (2016) Statistics and variability of the altitude of elves. Geophys Res Lett 43:5467–5474. https://doi.org/10.1002/2016GL068719

    Article  Google Scholar 

  117. van der Velde OA, Mika Á, Soula S, Haldoupis C, Neubert T, Inan US (2006) Observations of the relationship between sprite morphology and in-cloud lightning processes. J Geophys Res (Atmos) 111:D15203

    Article  Google Scholar 

  118. van der Velde OA, Bór J, Li J, Cummer SA, Arnone E, Zanotti F, Füllekrug M, Haldoupis C, NaitAmor S, Farges T (2010a) Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J Geophys Res (Atmos) 115:D24301. https://doi.org/10.1029/2010JD014442

    Article  Google Scholar 

  119. van der Velde OA, Montanyà J, Soula S, Pineda N, Bech J (2010b) Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain. J Geophys Res (Space Phys) 115:A00E56. https://doi.org/10.1029/2009JA014773

    Article  Google Scholar 

  120. van der Velde OA, Montanyà J, Soula S, Pineda N, Mlynarczyk J (2014) Bidirectional leader development in sprite-producing positive cloud-to-ground flashes: origins and characteristics of positive and negative leaders. J Geophys Res (Atmos) 119:12. https://doi.org/10.1002/2013JD021291

    Article  Google Scholar 

  121. Wescott EM, Sentman D, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the Sprites94 aircraft campaign. 2. Blue jets. Geophys Res Lett 22:1209–1212

    Article  Google Scholar 

  122. Wescott EM, Stenbaek Nielsen HC, Sentman DD, Heavner MJ, Moudry D, São Sabbas FT (2001) Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J Geophys Res 106:10467–10477

    Article  Google Scholar 

  123. Whitley T, Füllekrug M, Rycroft M, Bennett A, Wyatt F, Elliott D, Heinson G, Hitchman A, Lewis A, Sefako R, Fourie P, Dyers J, Thomson A, Flower S (2011) Worldwide extremely low frequency magnetic field sensor network for sprite studies. Radio Sci 46:RS4007. https://doi.org/10.1029/2010RS004523

    Article  Google Scholar 

  124. Williams E, Kuo C-L, Bór J, Sátori G, Newsome R, Adachi T, Boldi R, Chen A, Downes E, Hsu RR, Lyons W, Saba MMF, Taylor M, Su HT (2012) Resolution of the sprite polarity paradox: the role of halos. Radio Sci 47:RS2002. https://doi.org/10.1029/2011RS004794

    Article  Google Scholar 

  125. Winkler H, Notholt J (2014) The chemistry of daytime sprite streamers—a model study. Atmos Chem Phys 14:3545–3556. https://doi.org/10.5194/acp-14-3545-2014

    Article  Google Scholar 

  126. Winkler H, Notholt J (2015) A model study of the plasma chemistry of stratospheric Blue Jets. J Atmos Sol-Terr Phys 122:75–85. https://doi.org/10.1016/j.jastp.2014.10.015

    Article  Google Scholar 

  127. Yair Y, Price C, Ganot M, Greenberg E, Yaniv R, Ziv B, Sherez Y, Devir A, Bór J, Sátori G (2009) Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel. Atmos Res 91:529–537

    Article  Google Scholar 

  128. Yair Y, Price C, Katzenelson D, Rosenthal N, Rubanenko L, Ben-Ami Y, Arnone E (2015) Sprite climatology in the Eastern Mediterranean Region. Atmos Res 157:108–118. https://doi.org/10.1016/j.atmosres.2014.12.018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported within activities of the ESF TEA-IS and ESA-ASIM mission. E.A. acknowledges the support by ESA for the project CHIMTEA within the framework of the Changing Earth Science Network Initiative. Observations of TLEs made by S.S. were partly sponsored by the National Institute of Universe Science (INSU) thanks to LEFE/IMAGO and by the National Centre of Space Studies (CNES). ILAN observations are supported by Israel Science Foundation Grant 117/09, and this research was supported by the Israeli Science Foundation, Grant 145/03. The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing the lightning location data used in this paper. The authors are grateful for the essential contributions of all individual observers through their dedication, work on instrumentation and successful observations, particularly to: for IMTN, R. Cabassi, N. Conti, M. Morini, M. Silvestri (CIPH), P. Demaria (Ass. Astrofili Bisalta), L. Barbieri (Ass. Astrofili Bolognesi), M. Mannucci, N. Montigiani (Ass. Astrofili Fiorentini), M. Vivarelli (Gr. Astrofili Montagna Pistoiese), G. Ascione, P. Russo (SkySentinel), S. Eugeni (ANAI), L. Lamacchia (SAIt Puglia), I, Cervini, D. Belfiore, R. Manganelli, T. Maggioni, M. Menichini, M. Morini, F. Palmieri, E. Richetti, A. Severi, S. Sposetti, P. Venturi and all other IMTN node managers; J. Monari (IRA INAF); M. Eltri, E. Stomeo (Unione Astrofili Italiani, Sez. Meteore); D. Cataldi, G. Cataldi (LTPA Observer Project); Z. Andrei (CMN); K. Polakowski, H. Krygiel, J. Laskowski, P. Zareba, J. Baran, M. Maciejewski, T. Krzyzanowski, M. Reszelski (PFN); J. Tóth (Comenius University / SVMN); M. Korošec; R. Spinner. Part of above mentioned networks are now within EDMONd multi-national network. TLE observations at Gliwice, Poland, have been performed voluntarily by M. Mielniczek. The ILAN winter campaigns in Israel were dedicated to the memory of the first Israeli astronaut and sprite observer Col. Ilan Ramon, who died together with the crew of the Space Shuttle Columbia STS-107 on 1 February 2003.

Funding

Funding was provided by Hungarian Scientific Research Fund (Grant No. OTKA: K72474), European Cooperation in Science and Technology (Grant No. AP-18: The Physics of Lightning Flash and Its Effects) and European Commission H2020 (Grant No. H2020-MSCA-ITN-2016 no. 722337). Contribution from Hungary was supported by the National Research, Development and Innovation Office, Hungary-NKFIH (K115836). The establishment of the TLE observation site Sopron, Hungary and scientific communication was facilitated by COST Actions P-18, ‘The Physics of Lightning Flash and Its Effects’, and CA15211, ‘ELECTRONET’. The work of MF is supported by the Royal Society (UK) Grant NMG/R1/180252 and the Natural Environment Research Council (UK) under Grants NE/L012669/1 and NE/H024921/1. A.O. acknowledges support from Grants of Poland Ministry of Science and Higher Education to Institute of Geophysics, Polish Academy of Sciences, No. 3841/E-41/S/2018. TLE observations from Swider, Poland, have been supported by earlier Grants Nos. 3841/E-41/S/2012 to 3841/E-41/S/2015. The work of M.P. was supported by the GACR Grant 17-07027S and by the Praemium Academiae award of the CAS.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrico Arnone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arnone, E., Bór, J., Chanrion, O. et al. Climatology of Transient Luminous Events and Lightning Observed Above Europe and the Mediterranean Sea. Surv Geophys 41, 167–199 (2020). https://doi.org/10.1007/s10712-019-09573-5

Download citation

Keywords

  • Thunderstorms
  • Lightning
  • Transient luminous events
  • Ground-based observations
  • Europe
  • Climatology