Imaging Spectroscopy of Urban Environments

Abstract

Future spaceborne imaging spectroscopy data will offer new possibilities for mapping ecosystems globally, including urban environments. The high spectral information content of such data is expected to improve accuracies and thematic detail of maps on urban composition and urban environmental condition. This way, urgently needed information for environmental models will be provided, for example, for microclimate or hydrological models. The diverse vertical structures, highly frequent spatial change and a great variety of materials cause challenges for urban environmental mapping with Earth observation data, especially at the 30 m spatial resolution of data from future spaceborne imaging spectrometers. This paper gives an overview of the state-of-the-art in urban imaging spectroscopy considering decreasing spatial resolution, the related user requirements and existing knowledge gaps, as well as expected future directions for the work with new data sets.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

From Heiden et al. (2007, modified)

Fig. 3
Fig. 4
Fig. 5

From Priem and Canters (2016)

Fig. 6

Based on data from Okujeni et al. (2013, 2014, 2015)

Fig. 7
Fig. 8

Results based on reanalyzed data from Okujeni et al. (2013, 2014, 2017)

References

  1. Adeline KRM, Chen M, Briottet X, Pang SK, Paparoditis N (2013) Shadow detection in very high spatial resolution aerial images: a comparative study. ISPRS J Photogramm Remote Sens 80:21–38. https://doi.org/10.1016/j.isprsjprs.2013.02.003

    Article  Google Scholar 

  2. Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28:168–192

    Article  Google Scholar 

  3. Alonzo M, Roth K, Roberts D (2013) Identifying Santa Barbara’s urban tree species from AVIRIS imagery using canonical discriminant analysis. Remote Sens Lett 4:513–521. https://doi.org/10.1080/2150704X.2013.764027

    Article  Google Scholar 

  4. Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens Environ 148:70–83. https://doi.org/10.1016/j.rse.2014.03.018

    Article  Google Scholar 

  5. Alonzo M, Bookhagen B, McFadden JP, Sun A, Roberts DA (2015) Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sens Environ 162:141–153. https://doi.org/10.1016/j.rse.2015.02.025

    Article  Google Scholar 

  6. Asner GP et al (2012) Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124:454–465. https://doi.org/10.1016/j.rse.2012.06.012

    Article  Google Scholar 

  7. Bechtel B et al (2015) Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int J Geoinf 4:199. https://doi.org/10.3390/ijgi4010199

    Article  Google Scholar 

  8. Behling R, Bochow M, Foerster S, Roessner S, Kaufmann H (2015) Automated GIS-based derivation of urban ecological indicators using hyperspectral remote sensing and height information. Ecol Ind 48:218–234. https://doi.org/10.1016/j.ecolind.2014.08.003

    Article  Google Scholar 

  9. Ben-Dor E (2001) Imaging spectrometry for urban applications. In: van der Meer FD, De Jong SM (eds) Imaging spectrometry—basic principles and prospective applications. Remote sensing and digital image processing, vol 4. Springer, Dordrecht, pp 243–281

    Google Scholar 

  10. Ben-Dor E, Levin N, Saaroni H (2001) A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 µm). A case study over Tel-Aviv, Israel. Int J Remote Sens 22:2193–2218

    Google Scholar 

  11. Brackx M, Van Wittenberghe S, Verhelst J, Scheunders P, Samson R (2017) Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation. Environ Pollut 220:159–167. https://doi.org/10.1016/j.envpol.2016.09.035

    Article  Google Scholar 

  12. Carlson TN, Arthur ST (2000) The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob Planet Change 25:49–65

    Article  Google Scholar 

  13. Chen F, Wang K, Van de Voorde T, Tang TF (2017) Mapping urban land cover from high spatial resolution hyperspectral data: an approach based on simultaneously unmixing similar pixels with jointly sparse spectral mixture analysis. Remote Sens Environ 196:324–342. https://doi.org/10.1016/j.rse.2017.05.014

    Article  Google Scholar 

  14. Damm A (2008) Hyperspektrale Fernerkundung zur Ableitung pflanzenphysiologischer Parameter von Stadtbäumen – Strahlungstransfermodellierung für Berliner Kastanienbestände. Dissertation, Humboldt-Universität zu Berlin

  15. Degerickx J, Okujeni A, Iordache M-D, Hermy M, van der Linden S, Somers B (2017) A novel spectral library pruning technique for spectral unmixing of urban land cover. Remote Sens 9:565

    Article  Google Scholar 

  16. Degerickx J, Roberts D, McFadden JP, Hermy M, Somers B (2018) Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int J Appl Earth Obs Geoinf 73:26–38

    Article  Google Scholar 

  17. Delegido J et al (2014) Chlorophyll content mapping of urban vegetation in the city of Valencia based on the hyperspectral NAOC index. Ecol Ind 40:34–42. https://doi.org/10.1016/j.ecolind.2014.01.002

    Article  Google Scholar 

  18. Demarchi L, Canters F, Chan JC-W, van de Voorde T (2012a) Multiple endmember unmixing of CHRIS/Proba imagery for mapping impervious surfaces in urban and suburban environments. IEEE Trans Geosci Remote Sens 50:3409–3424. https://doi.org/10.1109/tgrs.2011.2181853

    Article  Google Scholar 

  19. Demarchi L, Chan JC-W, Ma J, Canters F (2012b) Mapping impervious surfaces from superresolution enhanced CHRIS/Proba imagery using multiple endmember unmixing. ISPRS J Photogramm Remote Sens 72:99–112. https://doi.org/10.1016/j.isprsjprs.2012.05.015

    Article  Google Scholar 

  20. Demarchi L, Canters F, Cariou C, Licciardi G, Chan JC-W (2014) Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J Photogramm Remote Sens 87:166–179. https://doi.org/10.1016/j.isprsjprs.2013.10.012

    Article  Google Scholar 

  21. Deng C, Wu C (2013) Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sens Environ 131:262–274. https://doi.org/10.1016/j.rse.2012.12.020

    Article  Google Scholar 

  22. Duca R, Del Frate F (2008) Hyperspectral and multiangle CHRIS–PROBA images for the generation of land cover maps. IEEE Trans Geosci Remote Sens 46:2857–2866. https://doi.org/10.1109/tgrs.2008.2000741

    Article  Google Scholar 

  23. Fan F, Deng Y (2014) Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters. Int J Appl Earth Obs Geoinf 33:290–301. https://doi.org/10.1016/j.jag.2014.06.011

    Article  Google Scholar 

  24. Fenger J (1999) Urban air quality. Atmos Environ 33:4877–4900

    Article  Google Scholar 

  25. Franke J, Roberts DA, Halligan K, Menz G (2009) Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens Environ 113:1712–1723

    Article  Google Scholar 

  26. Gastellu-Etchegorry J-P et al (2015) Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens 7:1667

    Article  Google Scholar 

  27. Giardino C et al (2018) Imaging spectrometry of inland and coastal waters: state of the art, achievements and perspectives. Surv Geophy. https://doi.org/10.1007/s10712-018-9476-0

    Google Scholar 

  28. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760. https://doi.org/10.1126/science.1150195

    Article  Google Scholar 

  29. Grimmond S (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173:83–88. https://doi.org/10.1111/j.1475-4959.2007.232_3.x

    Article  Google Scholar 

  30. Gu H, Singh A, Townsend PA (2015) Detection of gradients of forest composition in an urban area using imaging spectroscopy. Remote Sens Environ 167:168–180. https://doi.org/10.1016/j.rse.2015.06.010

    Article  Google Scholar 

  31. Guanter L et al (2015) The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens 7:8830

    Article  Google Scholar 

  32. Guarini R, Loizzo R, Longo F, Mari S, Scopa T, Varacalli G (2017) Overview of the Prisma space and ground segment and its hyperspectral products. Paper presented at the proceedings of 2017 ieee international geoscience and remote sensing symposium, July 23–28, 2017, Fort Worth, Texas

  33. Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63:2847–2863. https://doi.org/10.1016/j.socscimed.2006.07.030

    Article  Google Scholar 

  34. Hatt BE, Fletcher TD, Walsh CJ, Taylor SL (2004) The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ Manag 34:112–124

    Article  Google Scholar 

  35. Heiden U, Segl K, Roessner S, Kaufmann H (2007) Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens Environ 111:537–552

    Article  Google Scholar 

  36. Heiden U, Heldens W, Roessner S, Segl K, Esch T, Mueller A (2012) Urban structure type characterization using hyperspectral remote sensing and height information. Landsc Urban Plan 105:361–375. https://doi.org/10.1016/j.landurbplan.2012.01.001

    Article  Google Scholar 

  37. Heldens W, Heiden U, Esch T, Mueller A, Dech S (2017) Integration of remote sensing based surface information into a three-dimensional microclimate model. ISPRS J Photogramm Remote Sens 125:106–124. https://doi.org/10.1016/j.isprsjprs.2017.01.009

    Article  Google Scholar 

  38. Herold M, Roberts D (2005) Spectral characteristics of asphalt road aging and deterioration: implications for remote-sensing applications. Appl Opt 44:4327–4334

    Article  Google Scholar 

  39. Herold M, Gardner ME, Roberts DA (2003) Spectral resolution requirements for mapping urban areas. IEEE Trans Geosci Remote Sens 41:1907–1919

    Article  Google Scholar 

  40. Herold M, Roberts DA, Gardner ME, Dennison PE (2004) Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319

    Article  Google Scholar 

  41. Herold M, Schiefer S, Hostert P, Roberts DA (2007) Applying imaging spectrometry in urban areas. In: Quattrochi DA, Weng QH (eds) Urban remote sensing. CRC Press Inc., Boca Raton, pp 137–161

    Google Scholar 

  42. Hill J, Buddenbaum H, Townsend PA Imaging spectroscopy of forest ecosystems. Surv Geophys (under review)

  43. Hochberg EJ, Roberts DA, Dennison PE, Hulley GC (2015) Special issue on the hyperspectral infrared imager (HyspIRI): emerging science in terrestrial and aquatic ecology, radiation balance and hazards. Remote Sens Environ 167:1–5. https://doi.org/10.1016/j.rse.2015.06.011

    Article  Google Scholar 

  44. Huang Y, Yu B, Zhou J, Hu C, Tan W, Hu Z, Wu J (2013) Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution remote sensing images. Front Earth Sci 7:43–54. https://doi.org/10.1007/s11707-012-0339-6

    Article  Google Scholar 

  45. Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114:504–513. https://doi.org/10.1016/j.rse.2009.10.008

    Article  Google Scholar 

  46. Jilge M, Heiden U, Habermeyer M, Mende A, Juergens C (2017) Detecting unknown artificial urban surface materials based on spectral dissimilarity analysis. Sensors 17:1826

    Article  Google Scholar 

  47. Kennedy C et al (2009) Greenhouse gas emissions from global cities. Environ Sci Technol 43:7297–7302. https://doi.org/10.1021/es900213p

    Article  Google Scholar 

  48. Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41:1388–1400. https://doi.org/10.1109/tgrs.2003.812908

    Article  Google Scholar 

  49. Lambin EF et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269. https://doi.org/10.1016/S0959-3780(01)00007-3

    Article  Google Scholar 

  50. Launeau P et al (2017) Airborne hyperspectral mapping of trees in an urban area. Int J Remote Sens 38:1277–1311. https://doi.org/10.1080/01431161.2017.1285080

    Article  Google Scholar 

  51. Lawler JJ et al (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci 111:7492–7497. https://doi.org/10.1073/pnas.1405557111

    Article  Google Scholar 

  52. Leitão P, Schwieder M, Suess S, Okujeni A, Galvão L, van der Linden S, Hostert P (2015) Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP. Remote Sens 7:13098

    Article  Google Scholar 

  53. Licciardi GA, Del Frate F (2011) Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans Geosci Remote Sens 49:4163–4172. https://doi.org/10.1109/tgrs.2011.2160950

    Article  Google Scholar 

  54. Matsunaga T et al (2017) Current status of hyperspectral imager suite (HISUI) onboard International Space Station (ISS). Paper presented at the proceedings of 2017 IEEE international geoscience and remote sensing symposium, July 23–28, 2017, Fort Worth, Texas

  55. Ngie A, Abutaleb K, Ahmed F, Darwish A, Ahmed M (2014) Assessment of urban heat island using satellite remotely sensed imagery: a review. S Afr Geogr J 96:198–214. https://doi.org/10.1080/03736245.2014.924864

    Article  Google Scholar 

  56. Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24. https://doi.org/10.1002/qj.49710845502

    Google Scholar 

  57. Okujeni A, van der Linden S, Tits L, Somers B, Hostert P (2013) Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens Environ 137:184–197. https://doi.org/10.1016/j.rse.2013.06.007

    Article  Google Scholar 

  58. Okujeni A, van der Linden S, Jakimow B, Rabe A, Verrelst J, Hostert P (2014) A comparison of advanced regression algorithms for quantifying urban land cover. Remote Sens 6:6324–6346

    Article  Google Scholar 

  59. Okujeni A, van der Linden S, Hostert P (2015) Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning. Remote Sens Environ 158:69–80. https://doi.org/10.1016/j.rse.2014.11.009

    Article  Google Scholar 

  60. Okujeni A, van der Linden S, Suess S, Hostert P (2017) Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1640–1650. https://doi.org/10.1109/JSTARS.2016.2634859

    Article  Google Scholar 

  61. Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside. UK Landsc Urban Plan 71:295–310

    Article  Google Scholar 

  62. Pickett STA et al (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362. https://doi.org/10.1016/j.jenvman.2010.08.022

    Article  Google Scholar 

  63. Pontius J, Hanavan RP, Hallett RA, Cook BD, Corp LA (2017) High spatial resolution spectral unmixing for mapping ash species across a complex urban environment. Remote Sens Environ 199:360–369. https://doi.org/10.1016/j.rse.2017.07.027

    Article  Google Scholar 

  64. Price JC (1995) Examples of high resolution visible to near-infrared reflectance spectra and a standardized collection for remote sensing studies. Int J Remote Sens 16:993–1000. https://doi.org/10.1080/01431169508954459

    Article  Google Scholar 

  65. Priem F, Canters F (2016) Synergistic use of LiDAR and APEX hyperspectral data for high-resolution urban land cover mapping. Remote Sens 8:787

    Article  Google Scholar 

  66. Priem F, Okujeni A, van der Linden S, Canters F (2016) Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale. In: SPIE remote sensing. SPIE, p 100080K. https://doi.org/10.1117/12.2240929

  67. Priem F, Canters F, Okujeni A, van der Linden S (2017) Optimizing mixed spectra generation for regression-based unmixing of land cover in urban areas. In: 2017 joint urban remote sensing event (JURSE), 6–8 March 2017, pp 1–4. https://doi.org/10.1109/jurse.2017.7924554

  68. Ridd MK (1995) Exploring a V–I–S (vegetation–impervious surface–soil) model for urban ecosystem analysis through remote-sensing—comparative anatomy for cities. Int J Remote Sens 16:2165–2185

    Article  Google Scholar 

  69. Roberts DA, Quattrochi DA, Hulley GC, Hook SJ, Green RO (2012) Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the hyperspectral infrared imager (HyspIRI) decadal survey mission. Remote Sens Environ 117:83–101. https://doi.org/10.1016/j.rse.2011.07.021

    Article  Google Scholar 

  70. Roessner S, Segl K, Heiden U, Kaufmann H (2001) Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Trans Geosci Remote Sens 39:1525–1532

    Article  Google Scholar 

  71. Rosentreter J, Hagensieker R, Okujeni A, Roscher R, Wagner PD, Waske B (2017) subpixel mapping of urban areas using EnMAP data and multioutput support vector regression. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1938–1948. https://doi.org/10.1109/JSTARS.2017.2652726

    Article  Google Scholar 

  72. Schiefer S, Hostert P, Damm A (2006) Correcting brightness gradients in hyperspectral data from urban areas. Remote Sens Environ 101:25–37

    Article  Google Scholar 

  73. Segl K et al (2012) EeteS-The EnMAP End-to-End simulation tool. IEEE J Sel Top Appl Earth Obs Remote Sens 5:522–530. https://doi.org/10.1109/JSTARS.2012.2188994

    Article  Google Scholar 

  74. Seto KC, Sanchez-Rodriguez R, Fragkias M (2010) The new geography of contemporary urbanization and the environment. Ann Rev Environ Resour 35:167–194. https://doi.org/10.1146/annurev-environ-100809-125336

    Article  Google Scholar 

  75. Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA (2015) Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol Appl 25:2180–2197

    Article  Google Scholar 

  76. Small C (2001) Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens 22:1305–1334

    Article  Google Scholar 

  77. Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186

    Article  Google Scholar 

  78. Small C (2005) A global analysis of urban reflectance. Int J Remote Sens 26:661–681

    Article  Google Scholar 

  79. Small C, Okujeni A, van der Linden S, Waske B (2018) 6.07—remote sensing of urban environments A2—Liang, Shunlin. In: Comprehensive remote sensing. Elsevier, Oxford, pp 96–127. https://doi.org/10.1016/B978-0-12-409548-9.10380-X

  80. Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93:1879–1900. https://doi.org/10.1175/bams-d-11-00019.1

    Article  Google Scholar 

  81. Tan J et al (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54:75–84. https://doi.org/10.1007/s00484-009-0256-x

    Article  Google Scholar 

  82. Tigges J, Lakes T, Hostert P (2013) Urban vegetation classification: benefits of multitemporal RapidEye satellite data. Remote Sens Environ 136:66–75. https://doi.org/10.1016/j.rse.2013.05.001

    Article  Google Scholar 

  83. UN (2018) World urbanization prospects. The 2018 revision. https://esa.un.org/unpd/wup/Publications/Files/WUP2018-KeyFacts.pdf. Accessed 7 June 2018

  84. UN-Habitat (2010) State of the world's cities 2010/2011 - cities for all: bridging the urban divide state of the world's cities reports. UN-Habitat, 224 p

  85. van der Linden S, Hostert P (2009) The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens Environ 113:2298–2305. https://doi.org/10.1016/j.rse.2009.06.004

    Article  Google Scholar 

  86. van der Linden S, Janz A, Waske B, Eiden M, Hostert P (2007) Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. J Appl Remote Sens 1:013543

    Article  Google Scholar 

  87. van der Meer FD et al (2012) Multi- and hyperspectral geologic remote sensing: A review. Int J Appl Earth Obs Geoinf 14:112–128. https://doi.org/10.1016/j.jag.2011.08.002

    Article  Google Scholar 

  88. Van Wittenberghe S et al (2013) Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. Environ Pollut 173:29–37. https://doi.org/10.1016/j.envpol.2012.10.003

    Article  Google Scholar 

  89. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  90. Weng QH (2001) Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ Manag 28:737–748

    Article  Google Scholar 

  91. Weng Q, Hu X, Lu D (2008) Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: a comparison. Int J Remote Sens 29:3209–3232. https://doi.org/10.1080/01431160701469024

    Article  Google Scholar 

  92. Wetherley EB, Roberts DA, McFadden JP (2017) Mapping spectrally similar urban materials at sub-pixel scales. Remote Sens Environ 195:170–183. https://doi.org/10.1016/j.rse.2017.04.013

    Article  Google Scholar 

  93. Wirion C, Bauwens W, Verbeiren B (2017) Location- and time-specific hydrological simulations with multi-resolution remote sensing data in urban areas. Remote Sens 9:645

    Article  Google Scholar 

  94. Wu CS, Murray AT (2003) Estimating impervious surface distribution by spectral mixture analysis. Remote Sens Environ 84:493–505

    Article  Google Scholar 

  95. Yokoya N, Chan J, Segl K (2016) Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens 8:172

    Article  Google Scholar 

  96. Zhou GQ, Chen WR, Kelmelis JA, Zhang DY (2005) A comprehensive study on urban true orthorectification. IEEE Trans Geosci Remote Sens 43:2138–2147

    Article  Google Scholar 

  97. Zhu Z, Woodcock CE, Rogan J, Kellndorfer J (2012) Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens Environ 117:72–82. https://doi.org/10.1016/j.rse.2011.07.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors of the special issue and the organizers of the ISSI workshop on Exploring the Earth’s Ecosystems at a Global Scale with Imaging Spectroscopy Data in Bern, Switzerland, in November 2016, where the present paper was framed. The work of the authors was supported by the German Federal Ministry of Economic Affairs and Energy in the framework of the EnMAP Core Science Team (FKZ 50EE1622) and by the Belgian Science Policy Office in the framework of the Stereo III Project UrbanEARS (SR/00/307).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. van der Linden.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van der Linden, S., Okujeni, A., Canters, F. et al. Imaging Spectroscopy of Urban Environments. Surv Geophys 40, 471–488 (2019). https://doi.org/10.1007/s10712-018-9486-y

Download citation

Keywords

  • Imaging spectroscopy
  • Hyperspectral
  • Urban
  • Unmixing
  • Spatial resolution
  • Environmental Mapping and Analysis Program (EnMAP)