Lightning Discharges, Cosmic Rays and Climate

  • Sanjay Kumar
  • Devendraa Siingh
  • R. P. Singh
  • A. K. Singh
  • A. K. Kamra
Article
  • 60 Downloads

Abstract

The entirety of the Earth’s climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

Keywords

Cosmic rays and human hazards Cosmic rays and thunderstorm electrification Thunderstorms/lightning discharges and climate Global electric circuit and climate 

Notes

Acknowledgements

This work is supported under the collaboration program of IITM, Pune, and BHU, Varanasi. Indian Institute of Tropical Meteorology Pune is funded by Ministry of Earth Sciences (MoES). AKK acknowledges the support under the INSA Honorary Scientist Program. The authors wish to thank the anonymous reviewers for their suggestions which helped to improve the paper.

References

  1. Abbas MA, Latham J (1967) The instability of evaporating charged drops. J Fluid Mech 30:663–670CrossRefGoogle Scholar
  2. Aniol R (1952) Schwankungen der Gewitterhaufigkeit in Suddeutschland. Meteorol Rundsch 3(4):55–56Google Scholar
  3. Anisimov SV, Mareev EA (2008) Geophysical studies of the global electric circuit. Izvest Phys Solid Earth 44:760.  https://doi.org/10.1134/S1069351308100030 CrossRefGoogle Scholar
  4. Aplin KL, McPheat RA (2008) An infra-red filter radiometer for atmospheric cluster ion detection. Rev Sci Instrum 79:106–107CrossRefGoogle Scholar
  5. Aplin KL, Harrison RG, Rycroft MJ (2008) Investigating earth’s atmospheric electricity: a role model for planetary studies. Space Sci Rev 137:11–27CrossRefGoogle Scholar
  6. Arnold F (2006) Atmospheric aerosol and cloud condensation nuclei formation: a possible influence of cosmic rays? Space Sci Rev 125:169–186CrossRefGoogle Scholar
  7. Babich LP (2005) Analysis of a new electron-runaway mechanism and record-high runaway-electron currents achieved in dense-gas discharges. Phys Usp 48:1015–1037CrossRefGoogle Scholar
  8. Babich LP, Loiko TV (2009) Subnanosecond pulses of runaway electrons generated in atmosphere by high-voltage pulses of microsecond duration. Dokl Phys 429:479–482.  https://doi.org/10.1134/S1028335809110019 CrossRefGoogle Scholar
  9. Babich LP, Bochkov EI, Donskol EN, Kutsyk IM (2010) Source of prolonged bursts of high-energy gamma rays detected in thunderstorm atmosphere in Japan at the coastal area of the Sea of Japan and on high mountaintop. J Geophys Res 115:A09317.  https://doi.org/10.1029/2009JA015017 Google Scholar
  10. Babich LP, Bochkov EI, Dwyer JR, Kutsyk IM (2012) Numerical simulations of local thundercloud field enhancements caused by runaway avalanches seeded by cosmic rays and their role in lightning initiation. J Geophys Res 117:A09316.  https://doi.org/10.1029/2012JA017799 CrossRefGoogle Scholar
  11. Babich LP, Bochkov EI, Kutsyk IM, Neubert T, Chanrion O (2016) Positive streamer initiation from raindrops in thundercloud fields. J Geophys Res 121:6393–6403.  https://doi.org/10.1002/2016JD024901 Google Scholar
  12. Babich LP, Bochkov EI, Neubert T (2017) The role of charged ice hydrometeors in lightning initiation. J Atmos Sol Terr Phys 154:43–46.  https://doi.org/10.1016/j.jastp.2016.12.010 CrossRefGoogle Scholar
  13. Barlow WH (1849) On the spontaneous electric currents observed in wires of the electric telegraph. Philos Trans R Soc Lond 139:61–72CrossRefGoogle Scholar
  14. Baumgaertner AJG, Thayer JP, Neely RR, Lucas G III (2013) Toward a comprehensive global electric circuit model: atmospheric conductivity and its variability in CESM (WACCM) model simulations. J Geophys Res 118:9221–9232.  https://doi.org/10.1002/jgrd.50725 Google Scholar
  15. Baumgaertner AJG, Lucas GM, Thayer JP, Mallios SA (2014) On the role of clouds in the fair weather part of the global electric circuit. Atmos Chem Phys 14:8599–8610.  https://doi.org/10.5194/acp-14-8599-2014 CrossRefGoogle Scholar
  16. Bolduc L (2002) GIC observations and studies in the Hydro-Quebec power system. J Atmos Sol Terr Phys 64:1793–1802.  https://doi.org/10.1016/S1364-6826(02)00128-1 CrossRefGoogle Scholar
  17. Boteler DH, Pirjola RJ, Nevanlinna H (1998) The effects of geomagnetic disturbances on electrical systems at the Earth’s surface. Adv Space Res 22:17–27CrossRefGoogle Scholar
  18. Britten RA, Davis LK, Johnson AM, Keeney S, Siegel A, Sanford LD, Singletary SJ, Lonart G (2012) Low (20 cGy) doses of 1 GeV/u (56) Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats. Radiat Res 177:146–151CrossRefGoogle Scholar
  19. Brooks CEP (1925) The distribution of thunderstorms over the globe. Geophys Mem 3(24):147–164Google Scholar
  20. Brooks CEP (1934) The variations of the annual frequency of thunderstorms in relation to sunspots. Q J R Meteorol Soc 60:153–165CrossRefGoogle Scholar
  21. Burns GB, Tinsley BA, Frank-Kamenetsky AV, Bering EA (2007) Interplanetary magnetic field and atmospheric electric circuit influences on ground-level pressure at Vostok. J Geophys Res 112:D04103.  https://doi.org/10.1029/2006JD007246 CrossRefGoogle Scholar
  22. Burns GB, Tinsley BA, French WJR, Troshichev OA, Frank-Kamenetsky AV (2008) Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic. J Geophys Res 113:D15112.  https://doi.org/10.1029/2007JD009618 CrossRefGoogle Scholar
  23. Carey LD, Buffalo KM (2007) Environmental control of cloud-to-ground lightning polarity in severe storms. Mon Weather Rev 135:1327–1353CrossRefGoogle Scholar
  24. Cecil DJ, Buechler DE, Blakeslee RJ (2014) Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos Res 135–136:404–414.  https://doi.org/10.1016/j/atmosres.2012.06.028 CrossRefGoogle Scholar
  25. Celestin S, Pasko VP (2011) Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events. J Geophys Res 116:A03315.  https://doi.org/10.1029/2010JA016260 CrossRefGoogle Scholar
  26. Celestin S, Xu W, Pasko VP (2012) Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning. J Geophys Res 117:A05315.  https://doi.org/10.1029/2012JA017535 CrossRefGoogle Scholar
  27. Chalmers JA (1962) The measurement of vertical electric current in the atmosphere. J Atmos Terr Phys 24:297–302CrossRefGoogle Scholar
  28. Chilingarian A (2014) Thunderstorm ground enhancements—model and relation to lightning flashes. J Atmos Sol Terr Phys 107:68–76CrossRefGoogle Scholar
  29. Chilingarian A, Daryan A, Arakelyan K, Hovhannisyan A, Mailyan B, Melkumyan L, Hovsepyan G, Chilingaryan S, Reymers A, Vanyan L (2010) Ground-based observations of thunderstorm correlated fluxes of high-energy electrons, gamma rays, and neutrons. Phys Rev D 82:043009CrossRefGoogle Scholar
  30. Chilingarian A, Mailyan B, Vanyan L (2012) High-energy atmospheric physics; terrestrial gamm-ray flashes and related phenomena. Space Sci Rev 173:133–196CrossRefGoogle Scholar
  31. Chilingarian A, Hovsepyan G, Kozliner L (2013) Thunderstorm ground enhancements: gamma ray differential energy spectra. Phys Rev D 88:073001CrossRefGoogle Scholar
  32. Chilingarian A, Chilingaryan S, Reymers A (2015) Atmospheric discharges and particle fluxes. J Geophys Res.  https://doi.org/10.1002/2015JA021259 Google Scholar
  33. Christian H, Holmes CR, Bullock JW, Gaskell W, Illingwork AJ, Latham J (1980) Air borne and ground based studies of thunderstorm in the vicinity of Langmuir Laboratory. Q J R Meteorol Soc 106:159–174CrossRefGoogle Scholar
  34. Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WJ, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res 108:4005.  https://doi.org/10.1029/2002JD002347 CrossRefGoogle Scholar
  35. Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M et al (2015) Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 308:L416–L428.  https://doi.org/10.1152/ajplung.00260.201 CrossRefGoogle Scholar
  36. Colman JJ, Roussel-Dupré R, Triplett L (2010) Temporally self-similar electron distribution functions in atmospheric breakdown: the thermal runaway regime. J Geophys Res 115:1–17.  https://doi.org/10.1029/2009JA014509 CrossRefGoogle Scholar
  37. Connaughton V et al (2010) Associations between Fermi Gamma-ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J Geophys Res 115:A12307.  https://doi.org/10.1029/2010JA015681 CrossRefGoogle Scholar
  38. Connaughton V et al (2013) Radio signals from electron beams in terrestrial gamma ray flashes. J Geophys Res 118:2313–2320.  https://doi.org/10.1029/2012JA018288 CrossRefGoogle Scholar
  39. Copeland K, Sauer HH, Duke FE, Friedberg W (2008) Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008. Adv Space Res 42:1008–1029CrossRefGoogle Scholar
  40. Cummer SA, Zhai Y, Hu W, Smith DM, Lopez LI, Stanley MA (2005) Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes. Geophys Res Lett 32:L08811.  https://doi.org/10.1029/2005GL022778 CrossRefGoogle Scholar
  41. Cummer SA, Briggs MS, Dwyer JR, Xiong S, Connaughton V, Fishman GJ, Lu G, Lyu F, Solanki R (2014) The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes. Geophys Res Lett 41:85868593.  https://doi.org/10.1002/2014GL062196 CrossRefGoogle Scholar
  42. da Vieira LEA, Silva LA (2006) Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects. Geophys Res Lett 33:L14802.  https://doi.org/10.1029/2006GL026389 CrossRefGoogle Scholar
  43. Deierling W, Peterson WA (2008) Total lightning activity as an indicator of updraft characteristics. J Geophys Res 113:D16210.  https://doi.org/10.1029/2007JD009598 CrossRefGoogle Scholar
  44. Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys Res Lett 34:L16703.  https://doi.org/10.1029/2007GL030525 Google Scholar
  45. Duggal SP, Tsurutani BT, Pomerantz MA, Tsao CH, Smith EJ (1981) Relativistic cosmic rays and corotating interaction regions. J Geophys Res 86:7473CrossRefGoogle Scholar
  46. Duplissy J et al (2010) Results from the CERN pilot CLOUD experiment. Atmos Chem Phys 10:1635–1647CrossRefGoogle Scholar
  47. Duro MAS, Kaufmann P, Bertoni FCP, Rodrigues ECN, Pissolato FJ (2012) Long-term power transmission failures in Southeastern Brazil and the geophysical environment. Surv Geophys 33:973–989.  https://doi.org/10.1007/s10712-012-9191-1 CrossRefGoogle Scholar
  48. Dwyer JR (2008) Source mechanisms of terrestrial gamma-ray flashes. J Geophys Res 113:D10103.  https://doi.org/10.1029/2007JD009248 CrossRefGoogle Scholar
  49. Dwyer JR, Smith DM (2005) A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. Geophys Res Lett 32:L22804.  https://doi.org/10.1029/2005GL023848 Google Scholar
  50. Dwyer JR, Uman MA (2014) The physics of lightning. Phys Rep 534:147–241CrossRefGoogle Scholar
  51. Dwyer JR, Uman MA, Rassoul HK, Rakov VA, Al-Dayeh M, Caraway EL, Wright B, Jerauld J, Jordan DM, Rambo KJ, Chrest A, Smyth C (2004) A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophys Res Lett 31:L05119.  https://doi.org/10.1029/2003GL018771 Google Scholar
  52. Dwyer JR, Coleman LM, Lopez R, Saleh Z, Concha D, Brown M, Rassoul HK (2006) Runaway breakdown in the Jovian atmospheres. Geophys Res Lett 33:L22813.  https://doi.org/10.1029/2006GL027633 CrossRefGoogle Scholar
  53. Dwyer JR, Grefenstette BW, Smith DM (2008) High-energy electron beams launched into space by thunderstorms. Geophys Res Lett 35:L02815.  https://doi.org/10.1029/2007GL032430 CrossRefGoogle Scholar
  54. Dwyer JR, Smith D, Cummer SA (2012) High energy atmospheric physics: terrestrial gamma-ray flashes and related phenomena. Space Sci Rev 173:133–196.  https://doi.org/10.1007/s11214-012-9894-0 CrossRefGoogle Scholar
  55. Eastwood JP (2008) The science of space weather. Philos Trans R Soc A 366:4489–4500.  https://doi.org/10.1098/rsta.2008.0161 CrossRefGoogle Scholar
  56. Eichkorn S, Wilhelm S, Aufmhoff H, Wohlfrom KH, Arnold F (2002) Cosmic ray-induced aerosol-formation: first observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere. Geophys Res Lett 29:1698.  https://doi.org/10.1029/2002GL015044 CrossRefGoogle Scholar
  57. Elsworth Y, Howe R, Isaak GR, Mcleord CP, Miller BA, New R, Speeke CC, Wheeler SJ (1994) Solar p-mode frequencies and their dependence on solar activity recent results from the BISON network. Astrophys J 434:801–806CrossRefGoogle Scholar
  58. Erlykin AD, Sloan T, Wolfendale AW (2010) Correlations of clouds, cosmic rays and solar radiation over the Earth. J Atmos Sol Terr Phys 72:151CrossRefGoogle Scholar
  59. Ermakov VI (1993) Lightning as traces of ultrahigh-energy cosmic particles. Nauka Zhizn 7:92–98Google Scholar
  60. Ermakov VI, Stozhkov YI (1999) New mechanism of thundercloud and lightning production. In: Proceedings of 11th international conference on atmospheric electricity, Alabama, USA, pp 242–245Google Scholar
  61. Farrell WM et al (2004) Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J Geophys Res 109:E03004.  https://doi.org/10.1029/2003JE002088 Google Scholar
  62. Finney DL, Doherty RM, Wild O, Young PJ, Butler A (2016) Response of lightning NOx emissions and ozone production to climate change: insights from the atmospheric chemistry and climate model intercomparison project. Geophys Res Lett 43:5492–5500.  https://doi.org/10.1002/2016GL068825 CrossRefGoogle Scholar
  63. Fishman GJ et al (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264:1313–1316CrossRefGoogle Scholar
  64. Galloway JM, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  65. Girish TE, Eapen PE (2008) Geomagnetic and sunspot activity associations and ionospheric effects of lightning phenomena at Trivandrum near dip equator. J Atmos Sol Terr Phys 70:2222–2226CrossRefGoogle Scholar
  66. Goetz JG et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163.  https://doi.org/10.1016/j.cell.2011.05.040 CrossRefGoogle Scholar
  67. Gray LJ, Haigh JD, Harrison RG (2005) A review of the influence of solar changes on the Earth’s climate. Hadley Centre technical note 62, The UK Met OfficeGoogle Scholar
  68. Gray LJ, Rumbold S, Shine KP (2009) Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J Atmos Sci 66:2402–2417CrossRefGoogle Scholar
  69. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001.  https://doi.org/10.1029/2009RG000282 CrossRefGoogle Scholar
  70. Gurevich AV (1961) On the theory of runaway electrons. Sov Phys JETP 12:904–912Google Scholar
  71. Gurevich AV, Zybin KP (2001) Runaway breakdown and electric discharges in thunderstorms. Phys Usp 44:1119–1140.  https://doi.org/10.1070/PU2001v044n11ABEH000939 CrossRefGoogle Scholar
  72. Gurevich AV, Zybin KP (2005) Runaway breakdown and the mysteries of lightning. Phys Today.  https://doi.org/10.1063/1.1995746 Google Scholar
  73. Gurevich AV, Milikh GM, Roussel-Dupré RA (1992) Runaway electron mechanism of air break-down and preconditioning during a thunderstorm. Phys Lett A 165:463–468CrossRefGoogle Scholar
  74. Gurevich AV, Milikh GM, Valdiva JA (1997) Model X-ray emission and fast precondition during a thunderstorm. Phys Lett A 231:402–408.  https://doi.org/10.1016/S0375-9601(97)00554-X CrossRefGoogle Scholar
  75. Gurevich AV, Zybin KP, Roussel-Dupre RA (1999) Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers. Phys Lett A 254:79–87CrossRefGoogle Scholar
  76. Gurevich AV, Karashtin AN, Ryabov VA, Chubenko AP, Shepetov AL (2009) Non-linear phenomena in ionosphere plasma. The influence of cosmic rays and the runaway electron breakdown on the thunderstorm discharges. Phys Usp 179:779 (in Russian) CrossRefGoogle Scholar
  77. Hamid EY, Kawasaki Z, Mardiana R (2001) Impact of the 1997–98 El Nino on lightning activity over Indonesia. Geophys Res Lett 28:147–150CrossRefGoogle Scholar
  78. Hansen J et al (2005) Efficacy of climate forcing. J Geophys Res 110:D18104.  https://doi.org/10.1029/2005JD005776 CrossRefGoogle Scholar
  79. Harrison RG (2000) Cloud formation and the possible significance of change for atmospheric condensation and ice nuclei. Space Sci Rev 94:381–396CrossRefGoogle Scholar
  80. Harrison RG (2004) The global atmospheric electric circuit and climate. Surv Geophys 25:441–484CrossRefGoogle Scholar
  81. Harrison RG, Ambaum MHP (2008) Enhancement of cloud formation by droplet charging. Proc R Soc Lond A 464:2561–2573CrossRefGoogle Scholar
  82. Harrison RG, Ambaum MHP (2010) Observing Forbush decreases in cloud at Shetland. J Atmos Sol Terr Phys 72:1408–1414CrossRefGoogle Scholar
  83. Harrison RG, Carslaw KS (2003) Ion–aerosol–cloud processes in the lower atmosphere. Rev Geophys 41:1012.  https://doi.org/10.1029/2002RG000114 CrossRefGoogle Scholar
  84. Harrison RG, Tammet H (2008) Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci Rev 137:107–118.  https://doi.org/10.1007/s11214-008-9356-x CrossRefGoogle Scholar
  85. Harrison RG, Usoskin I (2010) Solar modulation in surface atmospheric electricity. J Atmos Sol Terr Phys 72:176–182CrossRefGoogle Scholar
  86. Harrison RG, Chalmers N, Hogan RJ (2008) Retrospective cloud determinations from surface solar radiation measurements. Atmos Res 90:54–62CrossRefGoogle Scholar
  87. Harrison RG, Aplin K, Rycroft M (2010) Atmospheric electricity coupling between earthquake regions and the ionosphere. J Atmos Sol Terr Phys 72(5–6):376–381CrossRefGoogle Scholar
  88. Hebert L III, Tinsley BA, Zhou L (2012) Global electric circuit modulation of winter cyclone vorticity in the northern high latitudes. Adv Space Res 50:806–818CrossRefGoogle Scholar
  89. Hoppel WA, Anderson RV, Willett JC (1986) Atmospheric electricity in the planetary boundary layer. The Earth’s electrical environment. National Academy Press, Washington, pp 149–165Google Scholar
  90. Huttunen KEJ, Kilpua SP, Pulkkinen A, Viljanen A, Tanskanen E (2008) Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 6:S10002.  https://doi.org/10.1029/2007SW000374 CrossRefGoogle Scholar
  91. Jangiam W, Tungjai M, Rithidech KN (2015) Induction of chronic oxidative stress, chronic inflammation and aberrant patterns of DNA methylation in the liver of titanium-exposed CBA/CaJ mice. Int J Radiat Biol 91:389–398CrossRefGoogle Scholar
  92. Jansky J, Lucas GM, Kalb C, Bayona V, Peterson MJ, Deierling W, Flyer N, Pasko VP (2017) Analysis of the diurnal variation of the global electric circuit obtained from different numerical models. J Geophys Res 122:12096–12917.  https://doi.org/10.1002/2017JD026515 Google Scholar
  93. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492.  https://doi.org/10.1038/nrg3230 CrossRefGoogle Scholar
  94. Jun-Fang W, Qie X-S, Hong L, Ji-Long Z, Xiao-XiaY Feng S (2012) Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Phys Sin 15:159202.  https://doi.org/10.7498/aps.61.159202 Google Scholar
  95. Kalb C, Deierling W, Baumgaertner A, Peterson M, Liu C, Mach D (2016) Parameterizing total storm conduction currents in the community earth system model. J Geophys Res 121:13715–13734.  https://doi.org/10.1002/2016JD025376 Google Scholar
  96. Kamra AK, Nair AA (2015) The impact of the Western Ghats on lightning activity on the western coast of India. Atmos Res 160:82–90CrossRefGoogle Scholar
  97. Kamra AK, Siingh D, Gautam AS, Kanawade VP, Tripathi SN, Srivastava AK (2015) Atmospheric ions and new particle formation events at a tropical location, Pune, India. Q J R Meteorol Soc 141:3140–3156.  https://doi.org/10.1002/qj.2598 CrossRefGoogle Scholar
  98. Kandalgaonkar SS, Tinmaker MIR, Kulkarni JR, Nath A, Kulkarni MK, Trimbke HK (2005) Spatio-temporal variability of lightning activity over the Indian region. J Geophys Res 110:D11108CrossRefGoogle Scholar
  99. Kappenman JG (2004) An overview of the increasing vulnerability trends of modern electric power grid infrastructures and the potential consequences of extreme space weather environments. In: Daglis IA (ed) Effects of space weather on technology infrastructure, vol 176. NATO science series. II. Mathematics, physics and chemistry, chapter 14: space weather and the vulnerability of electric power grids. Kluwer Academic Publishers, Dordrecht, pp 257–286CrossRefGoogle Scholar
  100. Kappenman JG (2005) An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun–Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Weather 3(S08):C01.  https://doi.org/10.1029/2004SW000128 Google Scholar
  101. Kar SK, Liou Y-A, Ha K-J (2009) Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos Res 92:80–87.  https://doi.org/10.1016/j.atmosres.2008.09.004 CrossRefGoogle Scholar
  102. Karapetyan GG (2012) Theoretical investigation of thunderstorm induced enhancements of cosmic ray fluxes. Astropart Phys 38:46–52CrossRefGoogle Scholar
  103. Karma AK, Bhalwankar RV, Sathe AB (1993) The onset of disintegration and corona in water drops falling at terminal velocity in horizontal electric fields. J Geophys Res 98:12901–12912CrossRefGoogle Scholar
  104. Kernthaler SC, Toumi R, Haigh JD (1999) Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys Res Lett 26:863–865CrossRefGoogle Scholar
  105. Khain A, Arkhipov V, Pinsky M et al (2004) Rain enhancement and fog elimination by seeding with charged droplets. Part I: theory and numerical simulations. J Appl Meteorol 43:1513–1529CrossRefGoogle Scholar
  106. Kirkby J (2007) Cosmic rays and climate. Surv Geophys 28:333–357CrossRefGoogle Scholar
  107. Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433.  https://doi.org/10.1038/nature10343 CrossRefGoogle Scholar
  108. Klemperer W, Vaida V (2006) Molecular complexes in close and far away. Proc Natl Acad Sci 103:10584–10588CrossRefGoogle Scholar
  109. Kleymenova EP (1967) On the variation of the thunderstorm activity in the solar cycle. Glav Upirav Gidromet Scuzb Met Gidr 8:64–68Google Scholar
  110. Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA (2008) Variations in global cloud cover and the fair-weather vertical electric field. J Atmos Sol Terr Phys 70:1633–1642CrossRefGoogle Scholar
  111. Kodera K (2004) Solar influence on the Indian Ocean Monsoon through dynamical processes. Geophys Res Lett 31:L24209.  https://doi.org/10.1029/2004GL02092 CrossRefGoogle Scholar
  112. Komm RW, Howe R, Hill F (2000) Width and energy of solar p-modes observed by global oscillation network group. Astrophys J 543:472–485.  https://doi.org/10.1086/6131101 CrossRefGoogle Scholar
  113. Koskinen H, Tanskanen E, Pirjola R, Pulkkinen A, Dyer C, Rodgers D, Cannon P (2001) Space weather effects catalogue. In: ESA space weather programme feasibility studies, FMI, QinetiQ, RAL ConsortiumGoogle Scholar
  114. Krehbiel PR, Riousset JA, Pasko VP, Thomas RJ, Rison W, Stanley MA, Edens HE (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1(4):233–237.  https://doi.org/10.1038/ngeo162 CrossRefGoogle Scholar
  115. Kuang Z, Jiang Y, Yung YL (1998) Cloud optical thickness variations during 1983–1991. Geophys Res Lett 25:1415–1417CrossRefGoogle Scholar
  116. Kudela K (2009) On energetic particles in space. Acta Phys Slovaca 59:537–652CrossRefGoogle Scholar
  117. Kudela K, Storini M, Hofer MY, Belov A (2000) Cosmic rays in relation to space weather. Space Sci Rev 93:153–174CrossRefGoogle Scholar
  118. Kulak A, Mlynarczyk J, Ostrowski M, Kubisz J, Michalec A (2012) Analysis of ELF electromagnetic field pulses recorded by the Hylaty station coinciding with terrestrial gamma-ray flashes. J Geophys Res 117:D18203.  https://doi.org/10.1029/2012JD018205 CrossRefGoogle Scholar
  119. Kulkarni MN, Siingh D (2014) The relation between lightning and cosmic rays during ENSO with and without IOD. Atmos Res 143:129–141.  https://doi.org/10.1016/j/atmosres.2014.010 CrossRefGoogle Scholar
  120. Kulkarni MN, Siingh D (2016) The atmospheric electrical index for ENSO modoki: is ENSO modoki one of the factor responsible for the worming trends slowdown? Nat Sci Rep.  https://doi.org/10.1038/srep24009 Google Scholar
  121. Kulmala M, Riipinen I, Nieminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usoskin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898.  https://doi.org/10.5194/acp-10-1885-2010 CrossRefGoogle Scholar
  122. Kumar CPA, Balan N, Panneerselvam C, Victor NJ, Selvaraj C, Nair KU, Elango P, Jeeva K, Akhila JC, Gurubaran S (2017) Investigation of the influence of galactic cosmic rays on clouds and climate in Antarctica. Proc Indian Natl Sci Acad.  https://doi.org/10.16943/ptinsa/2017/49028 Google Scholar
  123. Laakso L, Makela JM, Pirjola L, Kulmala M (2002) Model studies on ion-induced nucleation in the atmosphere. J Geophys Res 107:4427CrossRefGoogle Scholar
  124. Lam MM, Tinsley BA (2015) Solar wind-atmospheric electricity-cloud microphysics connections to weather and climate. J Atmos Sol Terr Phys 149:277–290CrossRefGoogle Scholar
  125. Lanzerotti LJ, Thomson DJ, Melori A, Medford LV, Maclennan CG (1986) Electromagnetic study of the Atlantic continental margin using a section of a transatlantic cable. J Geophys Res 91:7417–7427CrossRefGoogle Scholar
  126. Lanzerotti LJ, Sayres CH, Medford LV, Kraus JS, Maclennan CG, Thomson DJ (1993) Statistical study of induced voltage across oceanic telecommunications cables. In: Proceedings of 1992 solar terrestrial prediction conference, vol 1, p 224Google Scholar
  127. Latham J, Mason BJ (1962) Electrical charging of hail pellets in a polarizing electric field. Proc R Soc Lond Ser A Math Phys Sci 266(1326):387–401CrossRefGoogle Scholar
  128. Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terr Phys 65:801–812CrossRefGoogle Scholar
  129. Lee SH, Reeves JM, Wilson JC, Hunton DE, Viggiano AA, Miller TM, Ballenthin JO, Lait LR (2003) Particle formation by ion nucleation in the upper troposphere and lower stratosphere. Science 301(5641):1886–1989CrossRefGoogle Scholar
  130. Li J, Cummer SA (2011) Estimation of electric charge in sprites from optical and radio observations. J Geophys Res 116:A01301.  https://doi.org/10.1029/2010JA015391 Google Scholar
  131. Libbrecht KG, Woodward MF (1990) Solar-cycle effects on solar oscillation frequencies. Nature 345:779–782CrossRefGoogle Scholar
  132. Likholyot A, Lemke K, Hovey JK et al (2007) Mass spectrometric and quantum chemical determination of proton water clustering equilibria. Geochim Cosmochim Acta 71:2436–2447CrossRefGoogle Scholar
  133. Liou Y-A, Kar SK (2010) Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan. Atmos Res 95:115–122.  https://doi.org/10.1016/j.atmosres.2009.08.016 CrossRefGoogle Scholar
  134. Liu C, Williams ER, Zipser EJ, Burns G (2010) Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J Atmos Sci 67:309–323.  https://doi.org/10.1175/2009JAS3248.1 CrossRefGoogle Scholar
  135. Loeb LB (1966) The mechanism of stepped and dart leaders in cloud-to-ground lightning strokes. J Geophys Res 71:4711–4721CrossRefGoogle Scholar
  136. Lu G, Blakeslee RJ, Li J, Smith DM, Shao X-M, McCaul EW, Buechler DE, Christian HJ, Hall JM, Cummer SA (2010) Lightning mapping observation of a terrestrial gamma-ray flash. Geophys Res Lett 37:L11806.  https://doi.org/10.1029/2010GL043494 Google Scholar
  137. Mach DM, Blakeslee RJ, Bateman MG, BaileyJ C (2009) Electric fields, conductivity, and estimated currents from aircraft over flights of electrified clouds. J Geophys Res 114:D10204.  https://doi.org/10.1029/2008JD011495 CrossRefGoogle Scholar
  138. Mach DM, Bateman MG, Blakeslee RJ, Bailey JC (2010) Comparisons of total currents based on storm location, polarity, and flash rates derived from high altitude aircraft over flights. J Geophys Res 115:D0320.  https://doi.org/10.1029/2009JD012240 CrossRefGoogle Scholar
  139. Mach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201.  https://doi.org/10.1029/2010JD014462 CrossRefGoogle Scholar
  140. Maddams J, Parkin DM, Darby SC (2011) The cancer burden in the United Kingdom in 2007 due to radiotherapy. Int J Cancer 129:2885–2893CrossRefGoogle Scholar
  141. Maggio CR, Marshall TC, Stolzenburg M (2009) Estimations of charge transferred and energy released by lightning flashes. J Geophys Res 114:D14203.  https://doi.org/10.1029/2008JD011506 CrossRefGoogle Scholar
  142. Mallios SA, Pasko VP (2012) Charge transfer to the ionosphere and to the ground during thunderstorms. J Geophys Res 117:A08303.  https://doi.org/10.1029/2011JA017061 CrossRefGoogle Scholar
  143. Mansell ER, Ziegler CL (2013) Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. J Atmos Sci 70:2032–2050CrossRefGoogle Scholar
  144. Mareev EA (2010) Global electric circuit research: achievements and prospects. Phys Usp 53:504–551.  https://doi.org/10.3367/UFNe.0180.201005h.0527 CrossRefGoogle Scholar
  145. Mareev EA, Dementyeva SO (2017) The role of turbulence in thunderstorm, snowstorm, and dust storm electrification. J Geophys Res 122:6976–6988.  https://doi.org/10.1002/2016JD026150 Google Scholar
  146. Mareev EA, Volodin EM (2014) Variation of the global electric circuit and Ionospheric potential in a general circulation model. Geophys Res Lett 41:9009–9016.  https://doi.org/10.1002/2014GL062352 CrossRefGoogle Scholar
  147. Mareev EA, Yashunin SA, Davydenko SS, Marshall TC, Stolzenburg M, Maggio CR (2008) On the role of transient currents in the global electric circuit. Geophys Res Lett 35:L15810.  https://doi.org/10.1029/2008GL034554 CrossRefGoogle Scholar
  148. Markson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88:223–241.  https://doi.org/10.1175/BAMS-88-2-223 CrossRefGoogle Scholar
  149. Marsh ND, Svensmark H (2000) Low cloud properties influenced by cosmic rays. Phys Rev Lett 85:5004–5007CrossRefGoogle Scholar
  150. Marshall TC, Winn WP (1982) Measurements of charge precipitation in a New Mexico thunderstorm, lower positive charge centre. J Geophys Res 87:7141–7157CrossRefGoogle Scholar
  151. Marshall TC, Stolzenburg M, Maggio CR, Coleman LM, Krehbiel PR, Hamlin T, Thomas RJ, Rison W (2005) Observed electric fields associated with lightning initiation. Geophys Res Lett 32:L03813.  https://doi.org/10.1029/2004GL021802 Google Scholar
  152. McCarthy M, Parks GK (1985) Further observations of X-rays inside thunderstorms. Geophys Res Lett 12:393–396CrossRefGoogle Scholar
  153. Meehl GA, Warren M, Washington TML, Wigley JM, Arblaster AD (2003) Solar and greenhouse gas forcing and climate response in the twentieth century. J Clim 16:426–444.  https://doi.org/10.1175/1520-0442(2003)016<0426:SAGGFA>2.0.CO;2 CrossRefGoogle Scholar
  154. Meehl GA, Arblaster JM, Branstator G, van Loon H (2008) A coupled air–sea response mechanism to solar forcing in the Pacific region. J Clim 21(12):2883–2897CrossRefGoogle Scholar
  155. Meehl GA et al (2009) Decadal prediction. Bull Am Meteorol Soc 90:1467–1485.  https://doi.org/10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  156. Miousse IR, Koturbash I (2015) The fine LINE: methylation drawing the cancer landscape. Biomed Res Int, article ID 131547. http://dx.doi.org/10.1155/2015/131547
  157. Molinski T (2002) Why utilities respect geomagnetically induced currents. J Atmos Sol Terr Phys 64:1765–1778CrossRefGoogle Scholar
  158. Moretti PF, Cacciani A, Hanslmeier A, Messerotti M, Oliviero M, Otruba Severino WG, Warmuth A (2001) The source of the solar oscillations: convective or magnetic? Astron Astrophys 372:1038–1047.  https://doi.org/10.1051/0004-6361:20010588 CrossRefGoogle Scholar
  159. Moss GD, Pasko VP, Liu N, Veronis G (2006) Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. J Geophys Res 111:A02307.  https://doi.org/10.1029/2005JA011350 CrossRefGoogle Scholar
  160. Nicoll KA, Harrison RG (2009) Vertical current flow through extensive layer clouds. J Atmos Sol Terr Phys 71:2040–2046CrossRefGoogle Scholar
  161. Nicoll KA, Harrison RG (2010) Experimental determination of layer cloud edge charging from cosmic ray ionization. Geophys Res Lett 37:L13802.  https://doi.org/10.1029/2010GL043605 CrossRefGoogle Scholar
  162. Nicoll KA et al (2011) Observations of Saharan dust layer electrification. Environ Res Lett 6:014001CrossRefGoogle Scholar
  163. Nzabarushimana E, Miousse IR, Shao L, Chang J, Allen AR, Turner J, Stewart B, Raber J, Koturbash I (2014) Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. J Radiat Res 55:823–828.  https://doi.org/10.1093/jrr/rru010 CrossRefGoogle Scholar
  164. Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J, Olsen RHJ, Raber J, Hauer-Jensen M, Nelson GA, Koturbash I (2015) Combined exposure to protons and 56Fe leads to over expression of Il13 and reactivation of repetitive elements in the mouse lung. Life Sci Space Res (Amst) 7:1–8.  https://doi.org/10.1016/j.lssr.2015.08.001 CrossRefGoogle Scholar
  165. Odzimek A, Lester M, Kubici M (2010) EGATEC: a new high-resolution engineering model of the global atmospheric electric circuit-currents in the lower ionosphere. J Geophys Res 115:D18207.  https://doi.org/10.1029/JD013341 CrossRefGoogle Scholar
  166. Owens MJ, Scott CJ, Lockwood M, Barnard L, Harrison RG, Nicoll K, Watt C, Bennett AJ (2014) Modulation of UK lightning by heliospheric magnetic field polarity. Environ Res Lett 9:115009CrossRefGoogle Scholar
  167. Owens MJ, Scott CJ, Bennett AJ, Thomas SR, Lookwood M, Harrison RG, Lcem MM (2015) Lightning as a space-weather hazards: UK thunderstorm activity modulated by the passage of the heliospheric current sheet. Geophys Res Lett 42:9624–9632.  https://doi.org/10.1002/2015GL0066802 CrossRefGoogle Scholar
  168. Parihar VK et al (2015a) Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct 220:1161–1171.  https://doi.org/10.1007/s00429-014-0709-9 CrossRefGoogle Scholar
  169. Parihar VK et al (2015b) What happens to your brain on the way to Mars. Sci Adv 1(1400256):1–6.  https://doi.org/10.1126/sciadv.1400256 Google Scholar
  170. Parks GK, Mauk BH, Spiger R, Chin J (1981) X-ray enhancements detected during thunderstorm and lightning activities. Geophys Res Lett 8:1176–1179CrossRefGoogle Scholar
  171. Partamies N (2004) Meso-scale auroral physics from ground-based observations. Ph.D. Thesis, University of Helsinki, Faculty of Science, Department of Physical SciencesGoogle Scholar
  172. Pasko VP, Inan US, Bell TF (1998) Spatial structures of sprites. Geophys Res Lett 25:2123–2126CrossRefGoogle Scholar
  173. Penki RK, Kamra AK (2013a) Lightning distribution with respect to the monsoon trough position during the Indian summer monsoon season. J Geophys Res 118:4780–4787.  https://doi.org/10.1002/jgrd.50382 Google Scholar
  174. Penki RK, Kamra AK (2013b) The lightning activity associated with the dry and moist convections in the Himalayan regions. J Geophys Res 118:6246–6258.  https://doi.org/10.1002/jgrd.50499 Google Scholar
  175. Petersen WA, Christian HC, Rutledge SA (2005) TRMM observations of the global relationship between ice water content and lightning. Geophys Res Lett 32:L14819.  https://doi.org/10.1029/2005GL023236 CrossRefGoogle Scholar
  176. Petersen D, Bailey M, Beasley WH, Hallett J (2008) A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation. J Geophys Res 113:D17205.  https://doi.org/10.1029/2007JD009036 CrossRefGoogle Scholar
  177. Peterson M, Liu C, Mach D, Deierling W, Kalb C (2015) A method of estimating electric fields above electrified clouds from passive microwave observations. J Atmos Ocean Technol 32:1429–1446.  https://doi.org/10.1175/JTECH-D-14-00119.1 CrossRefGoogle Scholar
  178. Peterson M, Deierling W, Liu C, Mach D, Kalb C (2017) A TRMM/GPM retrieval of the total mean generator current for the global electric circuit. J Geophys Res 122:10025–10049.  https://doi.org/10.1002/2016JD026336 Google Scholar
  179. Phelps CT (1974) Positive streamer system intensification and its possible role in lightning initiation. J Atmos Sol Terr Phys 36:103–111CrossRefGoogle Scholar
  180. Pierce JR, Adams PJ (2009) Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. Atmos Chem Phys 9:1339–1356.  https://doi.org/10.5194/acp-9-1339-2009 CrossRefGoogle Scholar
  181. Pinto Neto O, Pinto Pinto IRCA, Jr O (2013) The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009. J Atmos Sol Terr Phys 98:12–21CrossRefGoogle Scholar
  182. Pirjola R (2002) Geomagnetic effects on ground-based technological systems. Surv Geophys 23:71–90CrossRefGoogle Scholar
  183. Pirjola R, Kauristie K, Lappalainen H, Viljanen A, Pulkkinen A (2005) Space weather risk. Space Weather 3:S02A02.  https://doi.org/10.1029/2004SW000112 Google Scholar
  184. Plante I, Cucinotta FA (2008) Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks. New J Phys 10:125020CrossRefGoogle Scholar
  185. Price C (2009) Will a drier climate result in more lightning? Atmos Res 91:479–484CrossRefGoogle Scholar
  186. Price C (2013) Lightning applications in weather and climate research. Surv Geophys 34:755–767.  https://doi.org/10.1007/s10712-012-9218-7 CrossRefGoogle Scholar
  187. Price C, Asfur M (2006) Can lightning observation be used as an indicator of upper tropospheric water vapour variability? BAMS Am Meteorol Soc 87:291–298.  https://doi.org/10.1175/BAMS-87-3-291 CrossRefGoogle Scholar
  188. Price C, Federmesser B (2006) Lightning-rainfall relationships in Mediterranean winter thunderstorms. Geophys Res Lett 33:L07813.  https://doi.org/10.1029/2005GL024794 CrossRefGoogle Scholar
  189. Price C, Rind D (1992) A simple lightning parameterization for calculating global lightning distribution. J Geophys Res 97:9919–9933.  https://doi.org/10.1029/92JD00719 CrossRefGoogle Scholar
  190. Ptashnik IV (2008) Evidence for the contribution of water dimers to the near-IR water vapour self continuum. J Quant Spectrosc Radiat Transf 109:831–852.  https://doi.org/10.1016/j.jqsrt.2007.09.004 CrossRefGoogle Scholar
  191. Pulkkinen A, Lindahl S, Viljanen A, Pirjola R (2005) Geomagnetic storm of 29–31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high voltage power transmission system. Space Weather 3:S08C03.  https://doi.org/10.1029/2004SW000123 CrossRefGoogle Scholar
  192. Qie X, Toumi R, Yuan T (2003) Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J Geophys Res 108:4551.  https://doi.org/10.1029/2002JD003304 CrossRefGoogle Scholar
  193. Qie X, Wu X, Yuan T, Bian J, Lu D (2014) Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J Clim 27:6612–6626.  https://doi.org/10.1175/JCLI-D-14-00076.1 CrossRefGoogle Scholar
  194. Rakov VA, Uman MA (2003) Lightning—physics and effects. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  195. Ramesh Kumar P, Kamra AK (2010) Lightning activity variations over three islands in a tropical monsoon region. Atmos Res 98:309–316.  https://doi.org/10.1016/j.atmosres.2010.07.014 CrossRefGoogle Scholar
  196. Ramesh Kumar P, Kamra AK (2012a) The spatiotemporal variability of lightning activity in the Himalayan foothills. J Geophys Res 117:D24201.  https://doi.org/10.1029/2012JD018246 CrossRefGoogle Scholar
  197. Ramesh Kumar P, Kamra AK (2012b) Land–sea contrast in lightning activity over the sea and peninsular regions of South/Southeast Asia. Atmos Res 118:52–67CrossRefGoogle Scholar
  198. Ramesh Kumar P, Kamra AK (2012c) Variability of lightning activity in South/Southeast Asia during 1997–98 and 2002–03 El Nino/La Nina events. Atmos Res 118:84–102CrossRefGoogle Scholar
  199. Ranalkar MR, Chaudhuri HS (2009) Seasonal variation of lightning activity over the Indian subcontinent. Meteorol Atmos Phys 104:125–134.  https://doi.org/10.1007/s00703-009-0026-7 CrossRefGoogle Scholar
  200. Ranalkar MR, Pawar SD, Pradeep Kumar P (2017) Characteristics of lightning activity in tropical cyclones developed over North Indian Ocean basin during 2010–2015. Atmos Res 187:16–32CrossRefGoogle Scholar
  201. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with Southern Ocillation/El-Nino. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  202. Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Nino/Southern Oscillation. Science 222:1195–1202CrossRefGoogle Scholar
  203. Reitz G (1993) Radiation environment in the stratosphere. Radiat Prot Dosim 48:2–65Google Scholar
  204. Renno NO, Abreu VJ, Koch J, Smith PH et al (2004) MATADOR 2002—a pilot field experiment on convective plumes and dust devils. J Geophys Res 109:E07001.  https://doi.org/10.1029/2003JE002219 CrossRefGoogle Scholar
  205. Rind D, Lean J, Lerner J, Lonergan P, Leboissetier A (2008) Exploring the stratospheric/tropospheric response to solar forcing. J Geophys Res 113:D24103.  https://doi.org/10.1029/2008JD010114 CrossRefGoogle Scholar
  206. Roble RG, Tzur I (1986) The global atmospheric-electrical circuit. In: The Earth’s electrical environment-study in geophysics. National Academy Press, WashingtonGoogle Scholar
  207. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339.  https://doi.org/10.1038/nm.2305 CrossRefGoogle Scholar
  208. Rohrer F, Berresheim H (2006) Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442:184–187.  https://doi.org/10.1038/nature04924 CrossRefGoogle Scholar
  209. Rosenfeld D, Lohman U, Raga GB, O’Dowd CD, Kumala M, Fuzzi S, Reissell A, Andrease MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313CrossRefGoogle Scholar
  210. Rossow WB, Cairns B (1995) Monitoring changes of clouds. Clim Change 31:175–217.  https://doi.org/10.1007/BF01095151 CrossRefGoogle Scholar
  211. Rusanov AI, Kuzmin VL (1977) Electric field influence on the surface tension of polar liquid. Kolloidny J 39:388–390Google Scholar
  212. Rycroft MJ (2006) Electrical processes coupling the atmosphere and ionosphere: an overview. J Atmos Sol Terr Phys 68:445–456CrossRefGoogle Scholar
  213. Rycroft MJ, Harrison RG (2012) Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit. Space Sci Rev 168:363–384.  https://doi.org/10.1007/s11214-011-9830-8 CrossRefGoogle Scholar
  214. Rycroft MJ, Odzimek A (2009) The impact of lightning flashes and sprites on the Earth’s global electric circuit: an overview of recent modeling results. In: Crosby NB, Huang T-Y, Rycroft MJ (eds) Coupling of thunderstorms and lightning discharges to near-earth space. American Institute of Physics Conference Proceedings, CP 1118, pp 124–135Google Scholar
  215. Rycroft MJ, Odzimek A (2010) Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J Geophys Res 115:A00E37.  https://doi.org/10.1029/2009JA014758 CrossRefGoogle Scholar
  216. Rycroft MJ, Israelsson S, Price C (2000) The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol Terr Phys 62:1563–1576.  https://doi.org/10.1016/S1364-6826(00)00112-7 CrossRefGoogle Scholar
  217. Rycroft MJ, Odzimek A, Arnold NF, Fullekrug M, Kulak A, Neubert T (2007) New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: the role of lightning and sprites. J Atmos Sol Terr Phys 69:445–456.  https://doi.org/10.1016/j.jastp.2007.09.004 CrossRefGoogle Scholar
  218. Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of Earth’s global electric circuit and atmospheric conductivity. Space Sci Rev.  https://doi.org/10.1007/11214-008-9368-6 Google Scholar
  219. Rycroft MJ, Nicoll KA, Aplin KL, Harrison RG (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol Terr Phys 90–91:199–211Google Scholar
  220. Saha U, Siingh D, Kamra AK, Galanaki E, Mitra A, Singh RP, Singh AK, Chakraborty S, Singh R (2017a) On the association of lightning activities and projected change in climate over the Indian sub-continent. Atmos Res 183:173–190CrossRefGoogle Scholar
  221. Saha U, Siingh D, Midya SK, Singh AK, Singh RP, Kumar S (2017b) Spatio-temporal variability of lightning and connectivity activity over South/South-East Asia with an emphasis during El Nino and La Nina. Atmos Res 197:150–166CrossRefGoogle Scholar
  222. Sartor JD (1967) The role of particle interactions in the distribution of electricity in thunderstorms. J Atmos Sci 24:601–615CrossRefGoogle Scholar
  223. Sastry S (2005) Water: ins and outs of ice nucleation. Nature 438:746CrossRefGoogle Scholar
  224. Sato T (2016) Evaluation of world population-weighted effective dose due to cosmic ray exposure. Sci Rep 6:33932.  https://doi.org/10.1038/srep33932 CrossRefGoogle Scholar
  225. Sato M, Fukunishi H (2005) New evidence for a link between lightning activity and tropical upper cloud coverage. Geophys Res Lett 32:L12807.  https://doi.org/10.1029/2005GL022865 Google Scholar
  226. Sato M, Takahashi Y, Yoshida A, Adachi T (2008) Global distribution of intense lightning discharges and their seasonal variations. J Phys D Appl Phys 41:234011.  https://doi.org/10.1088/0022-3727/41/23/234011 CrossRefGoogle Scholar
  227. Sátori G, Mushtak V, Williams E (2008) Schumann resonance signatures of global lightning activity. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, BerlinGoogle Scholar
  228. Sátori G, Williams E, Lemperger I (2009) Variability of global lightning activity on the ENSO time scale. Atmos Res 91:500–507CrossRefGoogle Scholar
  229. Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353.  https://doi.org/10.1007/s11214-008-9345-0 CrossRefGoogle Scholar
  230. Schlegel K, Diendorfer G, Thern S, Schmidt M (2001) Thunderstorms, lightning and solar activity—middle Europe. J Atmos Sol Terr Phys 63:1705–1713CrossRefGoogle Scholar
  231. Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phys 7:3823–3907. www.atmos-chem-phys.net/7/3823/2007 CrossRefGoogle Scholar
  232. Scott CJ, Harrison RG, Owens MJ, Lockwood M, Barnard L (2014) Evidence for solar wind modulation of lightning. Environ Res Lett 9:055004CrossRefGoogle Scholar
  233. Sen AK (1963) Integrated field intensity of atmospherics in relation to local thunderstorms. J Atmos Sol Terr Phys 25:306–308CrossRefGoogle Scholar
  234. Shao X-M, Hamlin T, Smith DM (2010) A closer examination of terrestrial gamma-ray flash-related lightning processes. J Geophys Res 115:A00E30.  https://doi.org/10.1029/2009JA014835 Google Scholar
  235. Shea MA, Smart DF (2000) Cosmic ray implications for human health. Space Sci Rev 93:187–205CrossRefGoogle Scholar
  236. Sherwood SC, Phillips VTJ, Wettlaufer JS (2006) Small ice crystals and the climatology of lightning. Geophys Res Lett 33:L05804.  https://doi.org/10.1029/2005GL025242 CrossRefGoogle Scholar
  237. Shindell DT, Faluvegi G, Unger N, Aguilar E, Schmidt GA, Koch DM, Bauer SE, Miller RL (2006) Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos Chem Phys 6:4427–4459CrossRefGoogle Scholar
  238. Siingh D, Singh RP (2010) The role of cosmic rays in the earth atmospheric process. Pramana J Phys 74:153–164CrossRefGoogle Scholar
  239. Siingh D, Singh RP, Kamra AK, Gupta PN, Singh R, Gopalakrishnan V, Singh AK (2005) Review of electromagnetic coupling between the earth atmosphere and space environment. J Atmos Sol Terr Phys 67:637–658CrossRefGoogle Scholar
  240. Siingh D, Gopalakrishnan V, Singh RP, Kamra AK, Singh S, Pant V, Singh R, Singh AK (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110.  https://doi.org/10.1016/j.atmosres.2006.05.005 CrossRefGoogle Scholar
  241. Siingh D, Singh AK, Patel RP, Singh R, Singh RP, Vennadhari B, Mukherjee M (2008) Thunderstorm, lightning, sprites and magnetospheric whistler-mode waves. Surv Geophys 29:499–551CrossRefGoogle Scholar
  242. Siingh D, Singh RP, Singh Ashok K, Kulkarni MN, Gautam AS, Singh Abhay K (2011) Solar activity, lightning and climate. Surv Geophys 32:659–703.  https://doi.org/10.1007/s10712-011-9127-1 CrossRefGoogle Scholar
  243. Siingh D, Singh RP, Singh AK, Kumar S, Kulkarni MN, Singh Abhay K (2012) Discharges in the stratosphere and mesosphere. Space Sci Rev 169:73–121.  https://doi.org/10.1007/s11214-012-9906-0 CrossRefGoogle Scholar
  244. Siingh D, Gautam AS, Kamra AK, Komsaare K (2013a) Nucleation events for the formation of charged aerosol particles at tropical, station—preliminary results. Atmos Res 132–133:239–252.  https://doi.org/10.1016/j.atmosres.2013.05.024 CrossRefGoogle Scholar
  245. Siingh D, Kumar PR, Kulkarni MN, Singh RP, Singh AK (2013b) Lightning, convective rain and solar activity—over the South/Southeast Asia. Atmos Res 120–121:99–111.  https://doi.org/10.1016/j.atmosres.2012.07.026 CrossRefGoogle Scholar
  246. Siingh D, Buchunde PS, Singh RP, Nath A, Kumar S, Ghodpage RN (2014) Lightning and convective rain study at different parts of India. Atmos Res 137:35–48.  https://doi.org/10.1016/j.atmosres.2013.09.018 CrossRefGoogle Scholar
  247. Siingh D, Singh RP, Kumar S, Dharmaraj T, Singh AK, Singh Ashok K, Patil MN, Singh S (2015a) Lightning and middle atmospheric discharges in the atmosphere. J Atmos Sol Terr Phys 134:78–101CrossRefGoogle Scholar
  248. Siingh D, Buchunde PS, Ghandi H, Patil MN, Singh R, Singh S, Singh RP (2015b) Lightning and convective rain over Indian Peninsula and Indo-China peninsula. Adv Space Res 55:1085–1103.  https://doi.org/10.1016/j.asr.2014.11.014 CrossRefGoogle Scholar
  249. Siingh D, Dharmaraj T, Ramesh Kumar P, Singh R, Kumar S, Chimthalu GR, Patil MN, Singh RP (2017) Variability of lightning, convective rain and solar activity study over South/Southeast Asia during ENSO episode for the period the period of 1998–2010. J Indian Geophys Union 21:401–441Google Scholar
  250. Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian longitude during the southwest monsoon. Mon Weather Rev 108:1840–1853CrossRefGoogle Scholar
  251. Singh DK, Singh RP, Kamra AK (2004) The electrical environment of the Earth’s Atmosphere: a review. Space Sci Rev 113:375–408Google Scholar
  252. Singh AK, Siingh D, Singh RP (2011) Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos Environ 45:3806–3818.  https://doi.org/10.1016/j.atmosenv.2011.04.027 CrossRefGoogle Scholar
  253. Singh R, Maurya AK, Chanrion O, Neubert T, Cummer SA, Mlynarczyk J, Cohen MB, Siingh D, Kumar S (2017) Assessment of unusual gigantic jets observed during the monsoon season: first observations from Indian subcontinent. Nat Sci Rep 7:16436.  https://doi.org/10.1038/541598-017-16696-s CrossRefGoogle Scholar
  254. Smith DM et al (2011) A terrestrial gamma ray flash observed from an aircraft. J Gephys Res 116:D20124.  https://doi.org/10.1029/2011JD016252 CrossRefGoogle Scholar
  255. Splitt ME, Lazarus SM, Barnes D, Dwyer JR, Rassoul HK, Smith DM, Hazelton B, Grefenstette B (2010) Thunderstorm characteristics associated with RHESSI identified terrestrial gamma ray flashes. J Geophys Res 115:A00E38.  https://doi.org/10.1029/2009JA014622 CrossRefGoogle Scholar
  256. Stanley MA, Shao X-M, Smith DM, Lopez LI, Pongratz MB, Harlin JD, Stock M, Regan A (2006) A link between terrestrial gamma-ray flashes and intracloud lightning discharges. Geophys Res Lett 33:L06803.  https://doi.org/10.1029/2005GL025537 CrossRefGoogle Scholar
  257. Stolzenburg M, Marshall TC (2009) Electric field and charge structure in lightning-producing clouds. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications. Springer, Berlin, pp 57–82Google Scholar
  258. Stolzenburg M, Marshall TC, Rust WD, Bruning E, MacGorman DR, Hamlin T (2007) Electric field values observed near lightning flash initiations. Geophys Res Lett 34:L04804.  https://doi.org/10.1029/2006GL028777 CrossRefGoogle Scholar
  259. Stozhkov YI (2003) The role of cosmic rays in the atmospheric processes. J Phys G Nucl Part Phys 29:913–923CrossRefGoogle Scholar
  260. Stozhkov YI, Svirzhevsky NS, Makhmutov VS et al (2001) Long term cosmic ray observations in the atmosphere. In: Proceedings of 27th international cosmic ray conference, Hamburg, vol 9, pp 3883–3886Google Scholar
  261. Stringfellow MF (1974) Lightning incidence in Britain and the solar cycle. Nature 249:332–333CrossRefGoogle Scholar
  262. Sun B, Bradley RS (2002) Solar influences on cosmic rays and cloud formation: a reassessment. J Geophys Res 107:4211.  https://doi.org/10.1029/2001JD000560 CrossRefGoogle Scholar
  263. Sun B, Bradley RS (2004) Reply to comment by N.D. Marsh and H. Svensmark on “Solar influence on cosmic rays and cloud formation: a reassessment”. J Geophys Res 109:D14206.  https://doi.org/10.1029/2003JD004479 CrossRefGoogle Scholar
  264. Suszcynsky DM, Roussel-Dupre R, Shaw G (1996) Ground-based search for X rays generated by thunderstorms and lightning. J Geophys Res 101:23505–23516CrossRefGoogle Scholar
  265. Svensmark H (1998) Influence of cosmic rays on Earth’s climate. Phys Rev Lett 81:5027–5030CrossRefGoogle Scholar
  266. Svensmark H, Friis-Christensen E (1997) Variation of cosmic rays fluxes and global cloud coverage—a missing link in solar-climate relationship. J Atmos Sol Terr Phys 59:1225–1232CrossRefGoogle Scholar
  267. Svensmark H, Torsten B, Svensmark J (2009) Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys Res Lett 36:L15101.  https://doi.org/10.1029/2009GL038429 CrossRefGoogle Scholar
  268. Takahashi T (1978) Riming electrification a charge generation mechanism in thunderstorm. J Atmos Sci 35:1536–1541CrossRefGoogle Scholar
  269. Tavani M et al (2011) Terrestrial gamma-ray flashes as powerful particle accelerators. Phys Rev Lett 106:018501CrossRefGoogle Scholar
  270. Taylor G (1964) The disintegration of water drops in an electric field. Proc R Soc Lond A 280:383–397CrossRefGoogle Scholar
  271. Tessendorf SA, Wiens KC, Rutledge SA (2007) Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon Weather Rev 135:3665–3681.  https://doi.org/10.1175/2006MWR1953.1 CrossRefGoogle Scholar
  272. Thaddeus P, Gottlieb CA, Gupta H et al (2008) Laboratory and astronomical detection of the negative molecular ion C3N. Astrophys J 677:1132–1139.  https://doi.org/10.1086/528947 CrossRefGoogle Scholar
  273. Thomson AWP (2007) Geomagnetic hazards. In: Gubbins D, Herrero-Bervera E (eds) Encyclopaedia of geomagnetism and paleomagnetism. Springer, Dordrect, pp 316–319. ISBN-13: 978-1-4020-3992-8CrossRefGoogle Scholar
  274. Thomson DJ, Lanzerotti LJ, Medford LV, Maclennan CG, Meloni A, Gregori GP (1986) Study of tidal periodicities using a transatlantic telecommunications cable. Geophys Res Lett 13:525–528CrossRefGoogle Scholar
  275. Thomson DJ, Lanzerotti LJ, Maclennan CG, Medford LV (1995) Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake. Pure Appl Geophys 144:427–440CrossRefGoogle Scholar
  276. Thomson DJ, Lanzerotti LJ, Vernon LV, Lessard MR, Smith LTP (2007) Solar modal structure of the engineering environment. Proc IEEE 95:1085–1132CrossRefGoogle Scholar
  277. Thomson AWP et al (2010) Present day challenges in understanding the geomagnetic hazard to national power grids. Adv Space Res 45:1182–1190.  https://doi.org/10.1029/2004JD005381 CrossRefGoogle Scholar
  278. Tinsley BA (2000) Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature and dynamics in the troposphere. Space Sci Rev 94:231–258CrossRefGoogle Scholar
  279. Tinsley BA (2004) Scavenging of condensation nuclei in clouds: dependence of sign of electro-scavenging effect on droplet and CCN sizes. In: Proceeding, international conference on clouds and precipitation, p 248, IAMAS, Bologna, 18–23 July 2004Google Scholar
  280. Tinsley BA (2008) The global atmospheric electric circuit and its effects on cloud microphysics. Rep Prog Phys 71:066801.  https://doi.org/10.1088/0034-4885/71/6/06 CrossRefGoogle Scholar
  281. Tinsley BA, Zhou L (2015) Parameterization of aerosol scavenging due to atmospheric ionization. J Geophys Res 120:8389–8410.  https://doi.org/10.1002/2014JD023016 Google Scholar
  282. Tinsley BA, Rohrbaugh RP, Hei M (2001) Electro-scavenging in clouds with broad droplets size distributions and weak electrification. Atmos Res 115:59–60Google Scholar
  283. Tinsley BA, Burns GB, Zhou L (2007) The role of the global electric circuit in solar and internal forcing of clouds and climate. Adv Space Res 40:1126–1139CrossRefGoogle Scholar
  284. Torii T, Takeishi M, Hosono T (2002) Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity. J Geophys Res 107:4324.  https://doi.org/10.1029/2001JD000938 CrossRefGoogle Scholar
  285. Torii T, Nishijima T, Kawasaki Z-I, Sugita T (2004) Downward emission of runaway electrons and bremsstrahlung photons in thunderstorm electric fields. Geophys Res Lett 31:L05113.  https://doi.org/10.1029/2003GL019067 CrossRefGoogle Scholar
  286. Torii T, Sugita T, Tanabe S, Kimura Y, Kamogawa M, Yajima K, Yasuda H (2009) Gradual increase of energetic radiation associated with thunderstorm activity at the top of Mt. Fuji. Geophys Res Lett 36:L13804.  https://doi.org/10.1029/2008GL037105 CrossRefGoogle Scholar
  287. Toumi R, Qie X (2004) Seasonal variation of lightning on the Tibetan Plateau: A Spring anomaly? Geophys Res Lett 31:L04115.  https://doi.org/10.1029/2003GL0189 CrossRefGoogle Scholar
  288. Toumi R, Haigh JD, Law KS (1996) A tropospheric ozone lightning climate feedback. Geophys Res Lett 23:1037–1040.  https://doi.org/10.1029/96GL00944 CrossRefGoogle Scholar
  289. Tripathi SN (2000) Removal of charged aerosols. Ph.D. Thesis, The University of ReadingGoogle Scholar
  290. Tripathi SN, Harrison RG (2001) Scavenging of electrified radioactive aerosols. Atmos Environ 35:5817–5821CrossRefGoogle Scholar
  291. Tripathi SN, Harrison RG (2002) Enhancement of contact nucleation by scavenging of charged aerosol particles. Atmos Res 62:57–70CrossRefGoogle Scholar
  292. Tripathi SN, Michael M, Harrison RG (2008) Profiles of ion and aerosol interactions in planetary atmospheres. Space Sci Rev 137:193–211CrossRefGoogle Scholar
  293. Tsonis AA (2013) Geoengineering carries unknown consequences. Phys Today 66:8–9CrossRefGoogle Scholar
  294. Tsuchiya H et al (2007) Detection of high-energy gamma rays from winter thunder-639 clouds. Phys Rev Lett 99:165002.  https://doi.org/10.1103/PhysRevLett.99.165002 CrossRefGoogle Scholar
  295. Tsuchiya H et al (2009) Observation of an energetic radiation burst from mountain-top 641 thunderclouds. Phys Rev Lett 102:255003.  https://doi.org/10.1103/PhysRevLett.102.255003 CrossRefGoogle Scholar
  296. Tsuchiya H et al (2011) Long-duration g ray emissions from 2007 and 2008 winter thunderstorms. J Geophys Res 116:D09113.  https://doi.org/10.1029/2010JD015161 Google Scholar
  297. Turco RP, Yu FQ, Zhao JX (2000) Tropospheric sulfate aerosol formation via ion–ion recombination. J Air Waste Manag Assoc 50(3):902CrossRefGoogle Scholar
  298. van der Velde OA, Bór J, Li J, Cummer SA, Arnone E, Zanotti F, Füllekrug M, Haldoupis C, NaitAmor S, Farges T (2010) Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J Geophys Res 115:D24301.  https://doi.org/10.1029/2010JD014442 Google Scholar
  299. van Loon H, Meehl GA, Shea DJ (2007) Coupled air–sea response to solar forcing in the Pacific region during northern winter. J Geophys Res 112(D2):D02108.  https://doi.org/10.1029/2006JD007378 Google Scholar
  300. Viggiano AA, Arnold F (1995) Ion chemistry and composition of the atmosphere. In: Volland H (ed) Handbook of atmospheric electrodynamics. CRC Press, Boca Raton, p 1Google Scholar
  301. Vonnegut B (1963) Some facts and speculations concerning the origin and role of thunderstorm electricity. Meteorol Monogr 5:224Google Scholar
  302. Wang M, Panner JE (2009) Aerosol indirect forcing in a global model with particle nucleation. Atmos Chem Phys 9:239–260.  https://doi.org/10.5194/acp-9-239-2009 CrossRefGoogle Scholar
  303. Weckwerth TM, Parsons DB (2006) A review of convection initiation and motivation for IHOP_2002. Mon Weather Rev 134:5–22CrossRefGoogle Scholar
  304. Weigel C, Schmezer P, Plass C, Popanda O (2015) Epigenetics in radiation-induced fibrosis. Oncogene 34:2145–2155.  https://doi.org/10.1038/onc.2014.145 CrossRefGoogle Scholar
  305. Williams ER (1985) Large-scale charge separation in thunderclouds. J Geophys Res 90:6013–6025CrossRefGoogle Scholar
  306. Williams ER (1992) The Schumann resonance: a global thermometer. Science 256:1184–1187.  https://doi.org/10.1126/science.256.5060.1184 CrossRefGoogle Scholar
  307. Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev 122:1917–1929CrossRefGoogle Scholar
  308. Williams ER (1999) Global circuit response to temperature on various time scales: a status report. In: Hayakawa M (ed) Atmospheric and ionospheric phenomenon associated with earthquakes. Terra Science Publishing Co., TokyoGoogle Scholar
  309. Williams ER (2001) Sprites, elves, and glow discharge tubes. Phys Today 54:41–47CrossRefGoogle Scholar
  310. Williams ER (2005) Lightning and climate: a review. Atmos Res 76:272–287CrossRefGoogle Scholar
  311. Williams ER (2009) The global electrical circuit: a review. Atmos Res 91:140–152CrossRefGoogle Scholar
  312. Williams ER, Mareev E (2014) Recent progress on the global electrical circuit. Atmos Res 135–136:208–227.  https://doi.org/10.1016/j.atmosres.2013.05.015 CrossRefGoogle Scholar
  313. Williams ER, Renno N (1993) An analysis of the conditional instability of the tropical atmosphere. Mon Weather Rev 121:21–36CrossRefGoogle Scholar
  314. Williams ER, Stanfill S (2002) The physical origin of the land–ocean contrast in lightning activity. C R Phys 3:1277–1292.  https://doi.org/10.1016/S1631-0705(02)01407-X CrossRefGoogle Scholar
  315. Williams ER, Geotis SG, Renno N, Rutledge SA, Rasmussen E, Rickenback T (1992) A radar and electrical study of tropical “hot towers”. J Atmos Sci 49:1386–1395CrossRefGoogle Scholar
  316. Williams ER et al (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(20):8082.  https://doi.org/10.1029/2001JD000380 CrossRefGoogle Scholar
  317. Williams ER, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land–ocean lightning contrast. J Geophys Res 109:D16206.  https://doi.org/10.1029/2003JD003833 CrossRefGoogle Scholar
  318. Wilson CTR (1916) On some determinations of the sign and magnitude of electric discharges in lightning flashes. Proc R Soc Lond Ser A 92:555–574CrossRefGoogle Scholar
  319. Wilson CTR (1920) Investigations on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc Lond Ser A 221:73–115CrossRefGoogle Scholar
  320. Wilson CTR (1925) The electric field of a thunderstorm and some of its effects. Proc R Soc Lond 37:32DGoogle Scholar
  321. Wilson CTR (1929) Some thundercloud problems. J Frankl Inst 208:1–12.  https://doi.org/10.1016/S0016-0032(29)90935-2 CrossRefGoogle Scholar
  322. Woodard MF, Noyes RW (1985) Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318:449–450CrossRefGoogle Scholar
  323. Xu W, Celestin S, Pasko VP (2012) Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders. Geophys Res Lett 39:L08801.  https://doi.org/10.1029/2012GL051351 Google Scholar
  324. Xu W, Celestin S, Pasko VP (2015) Optical emissions associated with terrestrial gamma ray flashes. J Geophys Res 120:13551370.  https://doi.org/10.1002/2014JA020425 Google Scholar
  325. Yair Y (2008) Charge generation and separation processes. Space Sci Rev 137:119–131.  https://doi.org/10.1007/s11214-008-9348-x CrossRefGoogle Scholar
  326. Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97:149–161.  https://doi.org/10.1016/j.radonc.2010.09.002 CrossRefGoogle Scholar
  327. Yoshida S, Morimoto T, Ushio T, Kawasaki Z (2007) ENSO and convective activities in Southeast Asia and western Pacific. Geophys Res Lett 34:L21806.  https://doi.org/10.1029/2007GL030758 CrossRefGoogle Scholar
  328. Yu F (2002) Altitude variations of cosmic rays induced production of aerosols: implications for global cloudiness and climate. J Geophys Res.  https://doi.org/10.1029/2001JA000248 Google Scholar
  329. Yu F, Luo G (2009) Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentration. Atmos Chem Phys 9:7691–7710.  https://doi.org/10.5194/acp-9-7691-2009 CrossRefGoogle Scholar
  330. Yu F, Turco RP (2000) Ultrafine aerosol formation via ion-mediated nucleation. Geophys Res Lett 27:883–886CrossRefGoogle Scholar
  331. Yu F, Turco RP (2001) From molecular clusters to nanoparticles: the role of ambient ionization in tropospheric aerosol formation. J Geophys Res 106:4797–4814CrossRefGoogle Scholar
  332. Yuan T, Remer L, Pickering KE, Yu H (2011) Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett 38:L04701.  https://doi.org/10.1029/2010GL046052 Google Scholar
  333. Zhou L, Tinsley BA (2007) Production of space charge at the boundaries of layer clouds. J Geohpys Res 112:D11203.  https://doi.org/10.1029/2006JD007998 CrossRefGoogle Scholar
  334. Zhou L, Tinsley BA (2010) Global circuit model with clouds. J Atmos Sci 67:1143–1156CrossRefGoogle Scholar
  335. Zipser EJ (1994) Deep cumulonimbus cloud system in the tropics with and without lightning. Mon Weather Rev 122:1837–1851.  https://doi.org/10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sanjay Kumar
    • 1
  • Devendraa Siingh
    • 2
  • R. P. Singh
    • 1
  • A. K. Singh
    • 1
  • A. K. Kamra
    • 2
  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations