Surveys in Geophysics

, Volume 39, Issue 4, pp 683–713 | Cite as

Geostatistical Interplay Between Geophysical and Geochemical Data: Mapping Litho-Structural Assemblages of Mesozoic Igneous Activities in the Parnaíba Basin (NE Brazil)

  • David L. de Castro
  • Diógenes C. Oliveira
  • Maria Helena B. M. Hollanda


Two widespread magmatic events are recorded in the Parnaíba basin (NE Brazil) during the Jurassic/Cretaceous opening of the Central and South Atlantic Oceans. The Early Jurassic (~ 200 Ma) lava flows of the Mosquito Formation occur essentially in the western and southern basin segments, representing one of the largest expressions of the Central Atlantic Magmatic Province in the South American Plate. In contrast, sill complexes and dike swarms of the Early Cretaceous (129–124 Ma) Sardinha Formation occur in the eastern part of the basin and are chrono-correlated to the large Paraná–Etendeka igneous province and to the Rio Ceará–Mirim Dike Swarm. We gathered geophysical, well logging, outcrop analogs and geochemical data to recognize geometrical shapes and areal distribution patterns of igneous-related constructions. Seismic and well data reveal hundreds of km wide multilayered sill complexes and dikes, which are widespread across vast regions of the basin without evident structural control from either the Precambrian basement grain or the basin internal architecture. Anomaly enhancement techniques and self-organizing maps (SOM) procedure were applied on airborne magnetic data, unraveling near-surface magmatic features in four distinct magnetic domains. Using SOM analysis, the basaltic rocks were divided into six groups based on magnetic susceptibility and major elements composition. These results suggest common origin for both magmatic episodes, probably a combination of effects of edge-driven convection and large-scale mantle warming under the westward moving West Gondwana during the Central and South Atlantic opening, which caused a shifted emplacement to the east of the igneous rocks in the Parnaíba basin.


Airborne magnetic Reflection seismic Major elements Magmatic events Parnaíba basin NE Brazil 



This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant No. 471064/2013-0) and Instituto Nacional de Ciência e Tecnologia para Estudos Tectônicos (INCT-ET). We acknowledge the Brazilian Agency of Petroleum and Natural Gas (Agência Nacional de Petróleo, Gás Natural e Biocombustíveis - ANP) and the Brazilian Geological Survey (CPRM), which provided the seismic, borehole and magnetic data used in our study. We also thank dGB Earth Sciences and K2 Sistemas for educational licenses of Opendtect and Trace®, respectively. We are grateful to two anonymous reviewers and Surveys in Geophysics Editor Michael J. Rycroft for providing constructive criticism and suggestions that improved the final version of the manuscript. Many students of the Universidade Federal do Rio Grande do Norte (UFRN) were helpful in data collecting during field trips. DLC and MHBMH thank CNPq for their research grants.


  1. Allen PA, Armitage JJ (2012) Chapter 30: cratonic basins. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances, 1st edn. Blackwell Publishing Ltd, Hoboken, pp 602–620CrossRefGoogle Scholar
  2. Almeida FFM, Brito Neves BB, Carneiro CDR (2000) The origin and evolution of the South American Platform. Earth Sci Rev 50:77–111CrossRefGoogle Scholar
  3. Alvarenga CJS, Moura CAV, Gorayeb PSS, Abreu FAM (2000) Paraguay and Araguaia belts. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. Rio de Janeiro. 31st International geological congress. pp 183–193Google Scholar
  4. Arora BR, Padilha AL, Vitorello I, Trivedi NB, Fontes SL, Rigoti A, Chamalaun FH (1999) Geoelectrical model for the Parnaíba Basin conductivity anomaly of Northeast Brazil and tectonic implications. Tectonophysics 302:57–69CrossRefGoogle Scholar
  5. Baski AK, Archibald DA (1997) Mesozoic igneous activity in the Maranhão province, northern Brazil: 40Ar/39Ar evidence for separate episodes of basaltic magmatism. Earth Planet Sci Lett 151:139–153CrossRefGoogle Scholar
  6. Bellieni G, Picirillo EM, Cavazzini G, Petrini R, Comin-Chiaramonti P, Nardy AJR, Civetta L, Melfi AJ, Zantedeschi P (1990) Low- and high TiO2, Mesozoic tholeiitic magmatism of the Maranhão basin (NE-Brazil): K-Ar age, geochemistry, petrology, isotope characteristics and relationships with Mesozoic low- and high TiO2 flood basalts of the Paraná Basin (SE-Brazil). Neues Jahrbuch Mineralogischer Abhandlungen 162:1–33Google Scholar
  7. Bellieni G, Macedo MHF, Petrini R, Piccirillo EM, Cavazzini G, Comim-Chiaramonti P, Ernesto M, Macedo JWP, Martins G, Melfi AJ, Pacca IG, de Min A (1992) Evidence of magmatic activity related to Middle Jurassic and lower Cretaceous rifting from northeastern Brazil (Ceará-Mirim): K/Ar age, paleomagnetism, petrology and Sr–Nd isotope characteristics. Chem Geol 97:9–32CrossRefGoogle Scholar
  8. Bertrand H, Dostal J, Dupuy C (1982) Geochemistry of early Mesozoic tholeiites from Morocco. Earth Planet Sci Lett 58:225–239CrossRefGoogle Scholar
  9. Bertrand H, Fornari M, Marzoli A, García-Duarte R, Sempere T (2014) The Central Atlantic magmatic province extends into Bolivia. Lithos 188:33–43CrossRefGoogle Scholar
  10. Bierlein FP, Fraser SJ, Brown WM, Lees T (2008) Advanced methodologies for the analysis of databases of mineral deposits and major faults. Aust J Earth Sci 55(1):79–99CrossRefGoogle Scholar
  11. Blaikie TN, Ailleres L, Betts PG, Cas RAF (2014) A geophysical comparison of the diatremes of simple and complex maar volcanoes, Newer Volcanics Province, south-eastern Australia. J Volcanol Geotherm Res 276:64–81CrossRefGoogle Scholar
  12. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, CambridgeGoogle Scholar
  13. Brito Neves BB, Fuck RA (2014) The basement of the South American platform: half Laurentian (N-NW) + half Gondwanan (E-SE) domains. Precambrian Res 244:75–86CrossRefGoogle Scholar
  14. Carneiro CC, Fraser S, Crósta AP, Silva AM, Barros CEM (2012) Semiautomated geologic mapping using self-organizing maps and airborne geophysics in the Brazilian Amazon. Geophysics 77:17–24CrossRefGoogle Scholar
  15. Chang HK, Kowsmann RO, Figueiredo AMF, Bender AA (1992) Tectonics and stratigraphy of the east Brazil rift system: an overview. Tectonophysics 213:97–138CrossRefGoogle Scholar
  16. Chopra S, Marfurt KJ (2007) Seismic attributes for prospect identification and reservoir characterization, vol 11. SEG geophysical developments series. Society of Exploration Geophysicists, TulsaCrossRefGoogle Scholar
  17. Condie KC (1997) Plate tectonics and crustal evolution, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  18. Cordani UG (1970) Idade do vulcanismo no Oceano Atlântico Sul. Boletim de Instituto de Geociências e Astronomia (Universidade de São Paulo) 1:9–75Google Scholar
  19. Cordani UG, Vandoros P (1967) Basaltic rocks of the Paraná basin. In: Bigarella JJ, Becker RD, Pinto JD (eds) Problems in Brazilian Gondwana geology. UFPR, Curitiba, pp 207–231Google Scholar
  20. Cordani UG, Brito Neves BB, Fuck RA, Porto R, Thomaz-Filho A, Cunha FMB (1984) Estudo preliminar de integração do Pré-Cambriano com os eventos tectônicos das bacias sedimentares brasileiras. Ciência Técnica Petróleo, Seção Exploração Petróleo 15:1–70Google Scholar
  21. Cordani UG, Brito Neves BB, Thomaz Filho A (2009) Estudo preliminar de integração do Pré-Cambriano com os eventos tectônicos das bacias sedimentares brasileiras (Atualização). Boletim de Geociências Petrobras 17:205–219Google Scholar
  22. CPRM - Geobank (2015) Cartas Geológicas do Brasil ao Milionésimo. http://geobank.cprm. Last access in 11/10/2016
  23. Curto JB, Vidotti RM, Fuck RA, Blakely RJ, Alvarenga CJS, Dantas EL (2014) The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. J Geophys Res Solid Earth. Google Scholar
  24. da Silva AG, Almeida CN, Valente SC, Almeida Leonardo F B (2017) The petrogenesis of tholeiitic diabases in eastern Parnaíba Basin: evidence for geochemical heterogeneities in the subcontinental lithospheric mantle in NE Brazil. Braz J Geol 47(1):109–126CrossRefGoogle Scholar
  25. Daly MC, Andrade V, Barousse CA, Costa R, McDowell K, Piggott N, Poole AJ (2014) Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil: Results of a deep seismic reflection profile. Tectonics 33:1–19CrossRefGoogle Scholar
  26. de Castro DL, Fuck RA, Phillips JD, Vidotti RM, Bezerra FHR, Dantas EL (2014) Crustal structure beneath the Paleozoic Parnaiba basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics 614:128–145CrossRefGoogle Scholar
  27. de Castro DL, Bezerra FHR, Fuck RA, Vidotti RM (2016) Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil. Solid Earth 7:529–548CrossRefGoogle Scholar
  28. de Figueiredo AMF, Teixeira L, Amorim J, Carminatti M (1982) Projeto Barreirinhas, reavaliação da Bacia Cretácea. Área terrestre e marítima. Internal Report. Petrobras, Rio de Janeiro, 58pGoogle Scholar
  29. De Min A, Piccirillo EM, Marzoli A, Bellieni G, Renne PR, Ernesto M, Marques L (2003) The Central Atlantic Magmatic Province (CAMP) in Brazil: petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds) The Central Atlantic Magmatic Province: insights from fragments of Pangea. AGU Geophysical Monographs, vol 136. pp 209–226Google Scholar
  30. Dentith M, Mudge ST (2014) Geophysics for the mineral exploration geoscientist. Cambridge University Press, 454 ppGoogle Scholar
  31. Drenth BJ, Anderson RR, Schulz KJ, Feinberg JM, Chandler VW, Cannon William F (2014) What lies beneath: geophysical mapping of a concealed Precambrian intrusive complex along the Iowa–Minnesota border. Can J Earth Sci 52:279–293CrossRefGoogle Scholar
  32. Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Fundamentals and frontiers. Cambridge studies in magnetism series. Cambridge University Press, Cambridge, p 573CrossRefGoogle Scholar
  33. Ferreira MA (2013) Bacia do Parnaíba. 12a Rodada—Licitações de Petróleo e Gás. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro. Last access: 18 June 2014
  34. Fodor RV, Vetter SK (1984) Rift-zone magmatism: petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin. Contrib Miner Pet 88:307–321CrossRefGoogle Scholar
  35. Fodor RV, Sial AN, Mukasa SB, Mckee EH (1990) Petrology, isotope characteristics and K-Ar ages of the Maranhão, northern Brazil, Mesozoic basalt province. Contrib Miner Pet 104:555–567CrossRefGoogle Scholar
  36. Fraser SJ, Dickson BL (2007) A new method for data integration and integrated data interpretation: self-organising maps. In: 5th decennial international conference on mineral exploration. Expanded abstracts. pp 907–910Google Scholar
  37. Fuck RA, Brito Neves BB, Schobbenhaus C (2008) Rodinia descendants in South America. Precambrian Res 160:108–126CrossRefGoogle Scholar
  38. Góes AMO (1995) A Formação Poti (Carbonífero Inferior) da Bacia do Parnaíba, PhD Dissertation, Instituto de Geociências, Universidade de São PauloGoogle Scholar
  39. Góes AMO, Feijó FJ (1994) Bacia do Parnaíba. Boletim de Geociências da Petrobras 8:57–67Google Scholar
  40. Góes AMO, Souza JMP, Teixeira UB (1990) Estágio Exploratório e Perspectivas Petrolíferas da Bacia do Parnaíba. Boletim de Geociências da Petrobras 4(1):55–64Google Scholar
  41. Grant FS (1985) Aeromagnetics, geology and ore environments, I. Magnetite in igneous, sedimentary and metamorphic rocks: an overview. Geoexploration 23(3):303–333CrossRefGoogle Scholar
  42. Hall M (2007) Smooth operator: smoothing seismic interpretations and attributes. Lead Edge 26:16–20CrossRefGoogle Scholar
  43. Heine C, Zoethout J, Muller RD (2013) Kinematics of the South Atlantic rift. Solid Earth 4:215–253CrossRefGoogle Scholar
  44. Helm-Clark CM, Rodgers DW, Smith RP (2004) Borehole geophysical techniques to define stratigraphy, alteration and aquifers in basalt. J Appl Geophys 55:3–38CrossRefGoogle Scholar
  45. Kohonen T (2001) Self-organizing maps, 3rd extended edition, vol 30. Springer series in information sciences. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  46. Marzoli A, Renne PR, Picirillo EM, Ernesto M, de Min A (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284:616–618CrossRefGoogle Scholar
  47. Merle R, Marzoli A, Bertrand H, Reisberg L, Verati C, Zimmermann C, Chiaradia M, Bellieni G, Ernesto M (2011) 40Ar/39Ar ages and Sr–Nd–Pb–Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil). Lithos 122:137–151CrossRefGoogle Scholar
  48. Mocitaiba LSR, de Castro DL, Oliveira DC (2017) Cartografia geofísica regional do magmatismo mesozoico na Bacia do Parnaíba. Geologia USP. Série Científica 17:169–192CrossRefGoogle Scholar
  49. Morgan JP (2015) On the origin of cratonic sag basins: did they sag? Geophysical Research Abstracts, 17, EGU2015-14246Google Scholar
  50. Ngonge ED, Hollanda MHBM, Archanjo CJ, Oliveira DC, Vasconcelos PMP, Muñoz PRM (2016) Petrology of continental tholeiitic magmas forming a 350-km-long Mesozoic dyke swarm in NE Brazil: constraints of geochemical and isotopic data. Lithos 258–259:228–252CrossRefGoogle Scholar
  51. Nomade S, Knight KB, Beutel E, Renne PR, Verati C, Féraud G, Marzoli A, Youbi N, Bertrand H (2007) Chronology of the Central Atlantic Magmatic Province: implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis. Palaeogeogr Palaeoclimatol Palaeoecol 244:326–344CrossRefGoogle Scholar
  52. Oliveira DC (2000) Stratigraphic interplays between igneous and sedimentary events in the early Paleozoic Jaibaras trough (Northeast Brazil). Revista Brasileira de Geociências 30(3):427–431CrossRefGoogle Scholar
  53. Oliveira DC, Mohriak WU (2003) Jaibaras trough: an important element in the early tectonic evolution of the Parnaíba interior sag basin, Northern Brazil. Mar Pet Geol 20:351–383CrossRefGoogle Scholar
  54. Peate DW (1997) The Paraná-Etendeka province. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism. American Geophysical Union, Washington, pp 217–245Google Scholar
  55. Phillips JD (2001) Designing matched band-pass and azimuthal filters for the separation of potential-field anomalies by source region and source type. In: 15th geophysical conference and exhibition, Australian society of exploration geophysicists, extended abstract. pp 1–4.
  56. Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Doré AG, Vining BA (eds) Petroleum geology: north-west Europe and global perspectives. Proceedings of the 6th petroleum geology conference. Petroleum Geology Conferences Ltd. Published by the Geological Society, London. pp 833–844Google Scholar
  57. Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using 3-D analytic signal. Geophysics 57:116–125CrossRefGoogle Scholar
  58. Saunders AD, Jones SM, Morgan LA, Pierce KL, Widdowson M, Xu YG (2007) Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem Geol 241:282–318CrossRefGoogle Scholar
  59. Schofield N, Holford S, Millett J, Brown D, Jolley D, Passey SR, Muirhead D, Grove C, Magee Cr, Murray J, Hole M, Jackson CAL, Stevenson C (2017) Regional magma plumbing and emplacement mechanisms of the Faroe–Shetland Sill Complex: implications for magma transport and petroleum systems within sedimentary basins. Basin Res 29:41–63CrossRefGoogle Scholar
  60. Smallwood JR, Maresh J (2002) The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic data from the Faeroe–Shetland area. In: Jolley DW, Bell BR (eds) The North Atlantic igneous province: stratigraphy, tectonic, volcanic and magmatic processes, vol 197. Geological Society of London Special Publication, London, pp 271–306Google Scholar
  61. Sousa MA (1996) Regional gravity modelling and geohistory of the Parnaíba Basin (NE Brazil), PhD dissertation, Department of Physics, University of Newcastle (UK)Google Scholar
  62. Stampfli GM, Hochard C (2009) Plate tectonics of the Alpine realm. In: Murphy JB, Hynes AJ, Keppie JD (eds) Ancient orogens and modern analogues, vol 327. Geological Society London Special Publications, London, pp 89–111Google Scholar
  63. Stampfli GM, Hochard C, Vérard C, Wilhem C, von Raumer J (2013) The formation of Pangea. Tectonophysics 593:1–19CrossRefGoogle Scholar
  64. Strecker U, Uden R (2002) Data mining of poststack seismic attribute volumes using Kohonen self-organizing maps. Lead Edge 21:1032–1036CrossRefGoogle Scholar
  65. Telford WM, Geldart LP, Sheriff RE, Keys DA (1998) Applied geophysics, 5th edn. Cambridge University Press, CambridgeGoogle Scholar
  66. Tozer B, Watts AB, Daly MC (2017) Crustal structure, gravity anomalies, and subsidence history of the Parnaíba cratonic basin, Northeast Brazil. J Geophys Res Solid Earth 122:5591–5621CrossRefGoogle Scholar
  67. Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York, p 450Google Scholar
  68. Vasconcelos AM, Ribeiro JAP, Colares JQS, Gomes IP, Forgiarini LL, Medeiros MF (2004) Folha teresina SB.23. In: Schobbenhaus C, Gonçalves JH, Santos JOS, Abram MB, Leão Neto R, Matos GMM, Vidotti RM, Ramos MAB, Jesus JDA (eds) Carta Geológica do Brasil ao Milionésimo, Sistema de Informações Geográficas. Programa Geologia do Brasil. CPRM (CD-ROM), BrasíliaGoogle Scholar
  69. Vaz PT, Rezende NGAM, Wanderley Filho JR, Travassos WAS (2007) Bacia do Parnaíba. Boletim de Geociências da Petrobras 15:253–263Google Scholar
  70. White RS, Mckenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729CrossRefGoogle Scholar
  71. Xiong S, Yang H, Ding Y, Li Z, Li W (2016) Distribution of igneous rocks in China revealed by aeromagnetic data. J Asian Earth Sci 129:231–242CrossRefGoogle Scholar
  72. Zalán PV (2004) Evolução Fanerozóica das Bacias Sedimentares Brasileiras. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, Brito Neves BB (eds) Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. Editora Beca, São Paulo, pp 407–421Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Geodinâmica e GeofísicaUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Departamento de Mineralogia e Geotectônica, Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations