Surveys in Geophysics

, Volume 39, Issue 2, pp 227–244 | Cite as

Gravity Spectra from the Density Distribution of Earth’s Uppermost 435 km

  • Josef Sebera
  • Roger Haagmans
  • Rune Floberghagen
  • Jörg Ebbing
Article
  • 123 Downloads

Abstract

The Earth masses reside in a near-hydrostatic equilibrium, while the deviations are, for example, manifested in the geoid, which is nowadays well determined by satellite gravimetry. Recent progress in estimating the density distribution of the Earth allows us to examine individual Earth layers and to directly see how the sum approaches the observed anomalous gravitational field. This study evaluates contributions from the crust and the upper mantle taken from the LITHO1.0 model and quantifies the gravitational spectra of the density structure to the depth of 435 km. This is done without isostatic adjustments to see what can be revealed with models like LITHO1.0 alone. At the resolution of 290 km (spherical harmonic degree 70), the crustal contribution starts to dominate over the upper mantle and at about 150 km (degree 130) the upper mantle contribution is nearly negligible. At the spatial resolution \(<150\,\hbox {km},\) the spectra behavior is driven by the crust, the mantle lid and the asthenosphere. The LITHO1.0 model was furthermore referenced by adding deeper Earth layers from ak135, and the gravity signal of the merged model was then compared with the observed satellite-only model GOCO05s. The largest differences are found over the tectonothermal cold and old (such as cratonic), and over warm and young areas (such as oceanic ridges). The misfit encountered comes from the mantle lid where a velocity–density relation helped to reduce the RMS error by 40%. Global residuals are also provided in terms of the gravitational gradients as they provide better spatial localization than gravity, and there is strong observational support from ESA’s satellite gradiometry mission GOCE down to the spatial resolution of 80–90 km.

Keywords

Density distribution model Satellite Gravimetry Lithosphere Upper mantle GOCE Gravitational gradients 

Notes

Acknowledgements

The study is connected to the ESA STSE project “3D Earth - A Dynamic Living Planet” (https://www.3dearth.uni-kiel.de/en). We thank the Editor in Chief Michael J. Rycroft and anonymous reviewers for their helpful comments.

References

  1. Afonso JC, Rawlinson N, Yang Y, Schutt DL, Jones AG, Fullea J, Griffin WL (2016) 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central US. J Geophys Res Solid Earth 121(10):7337–7370CrossRefGoogle Scholar
  2. Anderson DL (2007) New theory of the earth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Arfken GB, Weber HJ (2005) Mathematical methods for physicists international student edition. Academic press, CambridgeGoogle Scholar
  4. Artemieva IM (2006) Global \(1\times 1\) thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416(1):245–277CrossRefGoogle Scholar
  5. Auer L, Boschi L, Becker T, Nissen-Meyer T, Giardini D (2014) Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J Geophys Res Solid Earth 119(4):3006–3034CrossRefGoogle Scholar
  6. Bertotti B, Farinella P, Vokrouhlicky D (2012) Physics of the solar system: dynamics and evolution, space physics, and spacetime structure, vol 293. Springer, BerlinGoogle Scholar
  7. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):Google Scholar
  8. Bouman J, Ebbing J, Meekes S, Fattah RA, Fuchs M, Gradmann S, Haagmans R, Lieb V, Schmidt M, Dettmering D et al (2015) GOCE gravity gradient data for lithospheric modeling. Int J Appl Earth Obs Geoinf 35:16–30CrossRefGoogle Scholar
  9. Bouman J, Ebbing J, Fuchs M, Sebera J, Lieb V, Szwillus W, Haagmans R, Novak P (2016) Satellite gravity gradient grids for geophysics. Sci Rep.  https://doi.org/10.1038/srep21050 Google Scholar
  10. Chase CG (1979) Subduction, the geoid, and lower mantle convection. Nature 282:29CrossRefGoogle Scholar
  11. Cubells, J., Calsamiglia, A. (2010). Transitando por los espacios jurídico-penales: Discursos sociales e implicaciones para la intervención en casos de violencia hacia la mujer. Acciones e Investigaciones Sociales 28, 79-108Google Scholar
  12. De Pater I, Lissauer JJ (2015) Planetary sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Denis C, Rogister Y, Amalvict M, Delire C, Denis AI, Munhoven G (1997) Hydrostatic flattening, core structure, and translational mode of the inner core. Phys Earth Planet Inter 99(3):195–206CrossRefGoogle Scholar
  14. Ebbing J, Braitenberg C, Wienecke S (2007) Insights into the lithospheric structure and tectonic setting of the Barents Sea region from isostatic considerations. Geophys J Int 171(3):1390–1403.  https://doi.org/10.1111/j.1365-246X.2007.03602.x CrossRefGoogle Scholar
  15. Ebbing J, Bouman J, Fuchs M, Lieb V, Haagmans R, Meekes J, Fattah RA (2013) Advancements in satellite gravity gradient data for crustal studies. Lead Edge 32(8):900–906CrossRefGoogle Scholar
  16. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, Da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geodesy 85(11):749–758CrossRefGoogle Scholar
  17. Fukao Y, Obayashi M (2013) Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J Geophys Res Solid Earth 118(11):5920–5938CrossRefGoogle Scholar
  18. Fullea J, Rodríguez-González J, Charco M, Martinec Z, Negredo A, Villaseñor A (2015) Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other gravity data modelling: application to the Atlantic-Mediterranean transition zone. Int J Appl Earth Obs Geoinf 35:54–69CrossRefGoogle Scholar
  19. Gruber T (2015) GOCE gravity field models-signal and error assessment. In: EGU general assembly conference abstracts, vol 17, p 1657Google Scholar
  20. Haagmans R (2000) A synthetic earth for use in geodesy. J Geodesy 74(7–8):503–511CrossRefGoogle Scholar
  21. Hager BH, Clayton RW, Richards MA, Comer RP, Dziewonski AM (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313:541–545.  https://doi.org/10.1038/313541a0 CrossRefGoogle Scholar
  22. van Hees GS (2000) Some elementary relations between mass distributions inside the earth and the geoid and gravity field. J Geodyn 29(1):111–123CrossRefGoogle Scholar
  23. Hildebrand FB (1987) Introduction to numerical analysis. Courier Corporation, North ChelmsfordGoogle Scholar
  24. James R, Kopal Z (1962) The equilibrium figures of the earth and the major planets. Icarus 1(1–6):442–454CrossRefGoogle Scholar
  25. Kaban M, Tesauro M, Cloetingh S (2010) An integrated gravity model for Europe’s crust and upper mantle. Earth Planet Sci Lett 296(3):195–209CrossRefGoogle Scholar
  26. Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots: compositional and thermal contributions. Earth Planet Sci Lett 209(1):53–69CrossRefGoogle Scholar
  27. Kaula WM (2000) Theory of satellite geodesy: applications of satellites to geodesy. Dover Publications, MineolaGoogle Scholar
  28. Kennett B, Engdahl E, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122(1):108–124CrossRefGoogle Scholar
  29. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1. 0A 1-degree global model of Earth’s crust. Geophys Res Abstr 15:2658Google Scholar
  30. Li C, Van Der Hilst RD (2010) Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res Solid Earth 115(B7):Google Scholar
  31. Martinec Z (2014) Mass-density Green’s functions for the gravitational gradient tensor at different heights. Geophys J Int 196(3):1455–1465CrossRefGoogle Scholar
  32. Mayer-Guerr T (2015) The combined satellite gravity field model GOCO05s. In: EGU general assembly conference abstracts, vol 17, p 12364Google Scholar
  33. Montagner JP, Anderson DL (1989) Constrained reference mantle model. Phys Earth Planet Inter 58(2–3):205–227CrossRefGoogle Scholar
  34. Moritz H (2000) Geodetic reference system 1980. J Geodesy 74(1):128–133CrossRefGoogle Scholar
  35. Nolet G, Allen R, Zhao D (2007) Mantle plume tomography. Chem Geol 241(3):248–263CrossRefGoogle Scholar
  36. Panet I, Pajot-Métivier G, Greff-Lefftz M, Métivier L, Diament M, Mandea M (2014) Mapping the mass distribution of Earth’s mantle using satellite-derived gravity gradients. Nat Geosci 7(2):131–135CrossRefGoogle Scholar
  37. Pasyanos M (2017) Personal communicationGoogle Scholar
  38. Pasyanos ME, Masters TG, Laske G, Ma Z (2014) LITHO1.0: an updated crust and lithospheric model of the earth. J Geophys Res Solid Earth 119(3):2153–2173CrossRefGoogle Scholar
  39. Simmons NA, Forte AM, Boschi L, Grand SP (2010) GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J Geophys Res Solid Earth 115(B12):Google Scholar
  40. Simmons NA, Myers SC, Johannesson G, Matzel E (2012) LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. J Geophys Res Solid Earth 117(B10):Google Scholar
  41. Steinberger B, Becker TW (2016) A comparison of lithospheric thickness models. TectonophysicsGoogle Scholar
  42. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: Mission overview and early results. Geophys Res Lett 31(9):Google Scholar
  43. Tenzer R, Hamayun K, Vajda P (2009) Global maps of the crust 2.0 crustal components stripped gravity disturbances. J Geophys Res Solid Earth 114(B5):b05408.  https://doi.org/10.1029/2008JB006016 CrossRefGoogle Scholar
  44. Tenzer R, Novák P, Vajda P, Gladkikh V (2012) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207CrossRefGoogle Scholar
  45. Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2015) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys 36(1):139–165CrossRefGoogle Scholar
  46. Turcotte D, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  47. van der Meijde M, Pail R, Bingham R, Floberghagen R (2015) GOCE data, models, and applications: a review. Int J Appl Earth Obs Geoinf 35:4–15CrossRefGoogle Scholar
  48. Vallado D, McClain W (2001) Fundamentals of astrodynamics and applications, space technology library. Kluwer Academic Publishers, Dordrecht, p 792Google Scholar
  49. Yegorova T, Pavlenkova G (2015) Velocity-density models of the earth’s crust and upper mantle from the quartz, craton, and kimberlite superlong seismic profiles. Izvestiya Phys Solid Earth 51(2):250CrossRefGoogle Scholar
  50. Zoback ML, Mooney WD (2003) Lithospheric buoyancy and continental intraplate stresses. Int Geol Rev 45(2):95–118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Josef Sebera
    • 1
  • Roger Haagmans
    • 2
  • Rune Floberghagen
    • 1
  • Jörg Ebbing
    • 3
  1. 1.ESA/ESRINFrascati (Roma)Italy
  2. 2.ESA/ESTECNoordwijkThe Netherlands
  3. 3.Christian-Albrechts-Universität zu KielKielGermany

Personalised recommendations