Surveys in Geophysics

, Volume 38, Issue 5, pp 1005–1041 | Cite as

Magnetotelluric Studies for Hydrocarbon and Geothermal Resources: Examples from the Asian Region

  • Prasanta K. Patro


Magnetotellurics (MT) and the other related electrical and electromagnetic methods play a very useful role in resource exploration. This review paper presents the current scenario of application of MT in the exploration for hydrocarbons and geothermal resources in Asia. While seismics is the most preferred method in oil exploration, it is, however, beset with several limitations in the case of sedimentary targets overlain by basalts or evaporate/carbonate rocks where the high-velocity layers overlying the lower velocity layers pose a problem. In such cases, MT plays an important and, in some cases, a crucial role in mapping these potential reservoirs because of significant resistivity contrast generally observed between the basalts and the underlying sedimentary layers. A few case histories are presented that typically illustrate the role of MT in this context. In the case of geothermal exploration, MT is known to be highly effective in deciphering the target areas because of the conductivity structures arising from the presence and circulation of highly conductive fluids in the geothermal target areas. A few examples of MT studies carried out in some of the potential areas of geothermal significance in the Asian region are also discussed. While it is a relatively favorable situation for application of EM and MT methods in the case of exploration of the high-enthalpy region due to the development of well-defined conceptual models, still the low-enthalpy regions need to be understood well, particularly because of more complex structural patterns and the fluid circulation under relatively low-temperature conditions. Currently, a lot of modeling in both geothermal and hydrocarbon exploration is being done using three-dimensional techniques, and it is the right time to go for integration and three-dimensional joint inversion of the geophysical parameters such as resistivity, velocity, density, from MT, electromagnetics (EM), seismics and gravity.


Geothermal Hydrocarbon Magnetotellurics Electromagnetics Asia 



My sincere thanks to the Program Committee of the 23rd Electromagnetic Induction Workshop for inviting me to write a review. I would like to express my gratitude to the Director, CSIR-NGRI, Dr. V. M. Tiwari for his encouragement and financial support. Thanks to the local organizing committee for extending partial funding for attending the workshop. My research was supported with the funding from 12th Five Year Plan project SHORE (PSC 0205) funded by CSIR. The review article would not have been completed without full support from Dr. S.V.S. Sarma. I thank all the authors who have sent me their papers that helped in preparing the review paper. There may be more studies that have been done for which I could not get information for this review. Thanks to Dr. K.K. Abdul Azeez, Mr. Ujjal Borah, Mr. K. Chinna Reddy, Mr. Narendra Babu, Mr. Shivakrishna, Mr. Ajithabh K. S, Mr. Manik Verma for their help at different stages of preparation for this paper. Thanks to Prof. Ian Ferguson for reviewing the initial version of the manuscript. This paper benefitted from the comments of the guest editor, Dr. Ute Weckmann and the two anonymous reviewers.


  1. Abdul Azeez KK, Harinarayana T (2007) Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya. Curr Sci 93(3):323–329Google Scholar
  2. Abdul Azeez KK, Satish Kumar T, Basava S, Harinarayana T, Dayal AM (2011) Hydrocarbon prospects across Narmada–Tapti rift in Deccan trap, central India: Inferences from integrated interpretation of magnetotelluric and geochemical prospecting studies. Mar Pet Geol 28:1073–1082. doi: 10.1016/j.marpetgeo.2011.01.003 CrossRefGoogle Scholar
  3. Aizawa K, Koyama T, Hase H, Uyeshima M, Kanda W, Utsugi M, Yoshimura R, Yamaya Y, Hashimoto T, Yamazaki K, Komatsu S, Watanabe A, Miyakawa K, Ogawa Y (2014) Three dimensional resistivity structure and magma plumbing system of the Kirishima Volcanoes as inferred from broadband magnetotelluric data. J Geophys Res Solid Earth 119:198–215CrossRefGoogle Scholar
  4. Alan W (1969) The crush zone of the Iranian Zagros mountains, and its implications. Geol Mag 106:385–394CrossRefGoogle Scholar
  5. Amatyakul P, Arunwan TR, Siripunvaraporn W (2015) A pilot magnetotelluric survey for geothermal exploration in Mae Chan region, northern Thailand. Geothermics 55:31–38CrossRefGoogle Scholar
  6. Amatyakul P, Boonchaisuk S, Arunwan TR, Vachiratienchai C, Wood SH, Pirarai K, Fuangswasdi A, Siripunvaraporn W (2016) Exploring the shallow geothermal fluid reservoir of Fang geothermal system, Thailand via a 3-D magnetotelluric survey. Geothermics 64:516–526CrossRefGoogle Scholar
  7. Asamori K, Umeda K, Ogawa Y, Oikawa T (2010) Electrical resistivity structure and helium isotopes around Naruko volcano, northeastern Japan and its implication for the distribution of crustal magma. Int J Geophys. doi: 10.1155/2010/738139 Google Scholar
  8. Austria DCS, Tugawin RJ, Pastor MS, Morillo LB, Banos CFL, Layugan DB (2015) Subsurface characterization of the Leyte geothermal field, Philippines using magnetotellurics. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  9. Axelsson G, Gunnlaugsson E (2000) Long-term monitoring of high- and low-enthalpy fields under exploitation. International Geothermal Association, World Geothermal Congress 2000 Short Course, Kokonoe, Kyushu District, Japan, p 226Google Scholar
  10. Ayka S, Timur E, Sari C, Caylak C (2015) CSAMT investigations of the Caferbeyli (Manisa/Turkey) geothermal area. J Earth Syst Sci 124:149–159CrossRefGoogle Scholar
  11. Bai D, Meju MA, Liao Z (2001) MT images of deep crustal structure of the Rehai geothermal field near Tengchong, Southern China. Geophys J Int 147:677–687CrossRefGoogle Scholar
  12. Banos CEFL (1997) 1D interpretation of magnetotelluric data from Southern Leyte geothermal project, Philippines. Geothermal Training Programme, Orkustofnun, Grensasvegur 9, IS-108 Reykjavik, IcelandGoogle Scholar
  13. Banos CEFL (2012) Three-dimensional magnetotelluric (MT) modelling of the Northern Negros Geothermal Project, Central Philippines. Master of Science thesis, Victoria University of WellingtonGoogle Scholar
  14. Barnett PR, Mandagi S, Iskander T, Abidin Z, Armaladdoss A, Raad R (2015) Exploration and development of the Tawau Geothermal Project, Malaysia. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  15. Benderitter Y, Cormy G (1990) Possible approach to geothermal research and relative cost estimate. In: Dickson MH, Fanelli M (eds) Small geothermal resources. UNITAR/UNDP Centre for Small Energy Resources, Rome, pp 61–71Google Scholar
  16. Berdichevsky MN, Bubnov V, Aleksanova E, Alekseev D, Yakovlev A, Yakovlev D (2015) Magnetotelluric studies in Russia: regional-scale surveys and hydrocarbon exploration. In: Electromagnetic sounding of the earth’s interior, theory, modeling, practice, 2nd edn, pp 379–401. doi: 10.1016/B978-0-444-63554-9.00013-1
  17. Berktold A (1983) Electromagnetic studies in geothermal regions. Geophys Surv 6:173–200CrossRefGoogle Scholar
  18. Bhattacharya BB, Sinharay RK, Srivastava SV (2003) MT survey over the geothermal region of Bakreshwar for investigation deeper geo-electrical structure. J Geophys 24(1):41–44Google Scholar
  19. Bois C, Bouche P, Pelet R (1982) Global geologic history and distribution of hydrocarbon reserves. Am Asso Petrol Geol Bull 66(9):1248–1270Google Scholar
  20. Campanya J, Jones AG, Vozar J, Rath V, Blake S, Delhaye R, Farrel T (2015) Porosity and permeability constraints from electrical resistivity models: examples using magnetotelluric data. In: Proceedings world geothermal congress 2015, Melbourne, Australia, 19–25, April 2015Google Scholar
  21. Cao Z, He Z, Chang Y (2006) A simulation study of induced polarization effect of magnetotelluric and its application in oil and gas detection. Prog Geophys 21:1252–1257Google Scholar
  22. Chang PY, Lo W, Song SR, Ho KR, Wu CS, Chen CS, Lai YC, Chen HF, Lu HY (2014) Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics 50:91–100CrossRefGoogle Scholar
  23. Chen Q, Hu W, Li J (2006) Method for inversing real spectral parameters based on magnetotelluric method (MT). J Oil Gas Technol 28:61–64Google Scholar
  24. Chiang CW, Hsu HL, Chen CC (2015) An investigation of the 3D electrical resistivity structure in the Chingshui geothermal area, NE Taiwan. Terr Atmos Ocean Sci 26(3):269–281CrossRefGoogle Scholar
  25. Daud Y, Javino F, Nordin MNM, Razak M, Amnan I, Saputra R, Agung L, Sucandra (2010) The first magnetotelluric investigation of the Tawau geothermal prospect, Sabah, Malaysia. In: Proceedings world geothermal congress, Bali, Indonesia, 25–29 AprilGoogle Scholar
  26. Davidenko K, Ivanov S, Kudryavceca E, Legeydo P, Veeken PCH (2008) Geo-electric surveying, a useful tool for hydrocarbon exploration: 70th Conference and Exhibition, EAGE, Extended Abstracts, P301Google Scholar
  27. Davydycheva S, Rykhlinski N, Legeydo P (2006) Electrical-prospecting method for hydrocarbon search using the induced-polarization effect. Geophysics 71(4):G179–G189CrossRefGoogle Scholar
  28. Dong W, Zhao X (2008) The time-frequency electromagnetic method and its application in western China. Appl Geophys 5(2):127–135CrossRefGoogle Scholar
  29. Glover PWJ (2010) A generalized Archie’s law for n phases. Geophysics 75(6):E247–E265CrossRefGoogle Scholar
  30. GSI 2000 Seismotectonic Atlas of India and Its Environs. Geological Survey of India PublicationGoogle Scholar
  31. Harinarayana T(2008) Application of magnetotelluric studies in India, Memoir Geological Society of India, No. 68, pp 337–356Google Scholar
  32. Harinarayana T, Someswara Rao M, Sarma MVC, Veeraswamy K, Lingaiah A, Prabhakar ER, Virupakshi G, Murthy DN, Sarma SVS (2000a) Magnetotelluric investigations in Tatapani Geothermal region, Surguja district, Madhya Pradesh, India. Technical report, NGRI-2000-exp-282Google Scholar
  33. Harinarayana T, Sastry RS, Nagarajan N, Rao SPE, Manoj C, Naganjaneyulu K, Virupakshi G, Murthy DN, Sarma SVS (2000b) Integrated geophysical studies for hydrocarbon exploration, Kutch, India. NGRI-2000-EXP-296Google Scholar
  34. Harinarayana T, Someswara Rao M, Veeraswamy K, Murthy DN, Sarma MVC, Sastry RS, Virupakshi G, Rao SPE, Patro BPK, Manoj C, Rao M, Sreenivasulu T, Abdul Azeez KK, Naganjaneyulu K, Begum SK, Kumar BF, Sudha Rani K, Sreenivas M, Prasanth V, Aruna P (2003) Exploration sub-trappean mesozoic basins in the western part of Narmada–Tapti region of Deccan syneclise. NGRI-2003-EXP-404Google Scholar
  35. Harinarayana T, Abdul Azeez KK, Naganjaneyulu K, Manoj C, Veeraswamy K, Murthy DN, Rao SPE (2004) Magnetotelluric studies in Puga valley geothermal field, NW Himalaya, Jammu and Kashmir, India. J Volcanol Geotherm Res 138:405–424CrossRefGoogle Scholar
  36. Harinarayana T, Murthy DN, Sudha Rani K, Abdul Azeez KK, Basava S, Roy S, Ray L (2005a) Magnetotelluric and geothermal investigations in Loharinag–Pala hydro power project, Uttaranchal. NGRI technical report no: NGRI-2006- EXP-525Google Scholar
  37. Harinarayana T, Murthy DN, Rao SPE, Sudha Rani K, Srinivasulu T, Abdul Azeez KK, Srinivas M, Virupakshi G (2005b) Magnetotelluric and Geothermal Investigations in Tapovan-Vishnugad hydroelectric power project, Uttaranchal. NGRI technical report no: NGRI-2004-EXP-430Google Scholar
  38. Harinarayana T, Abdul Azeez KK, Murthy DN, Veeraswamy K, Rao SPE, Manoj C, Naganjaneyulu K (2006) Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. J Appl Geophys 58:280–295CrossRefGoogle Scholar
  39. Harinarayana T, Virupakshi G, Murthy DN, Veeraswamy K, Rao SPE, Abdul Azeez KK, Basava S, Dhanunjaya Naidu G, Shankar R, Sreedhar SV, Sudha Rani K, Gupta AK, Sreenivasulu T, Sreenivas M (2008) Magnetotelluric investigations in geothermal fields of Satluj-Spiti, Beas-Partbati Valleys in Himalchal Pradesh, Badrinath-Tapovan in Uttarakhand and Surajkund in Jharkhand areas, India. NGRI technical report no: NGRI-2008-EXP-637Google Scholar
  40. Harinarayana T, Murthy DN, Sastry RS, Virupakshi SG, Someswara Rao M, Veeraswamy K, Rao SPE, Manoj C, Patro BPK, Abdul Azeez KK, Naganjaneyulu K, Sarma MVC, Srinivasulu T, Basava S, Naidu GD, Gupta AK, Kumara Swamy VTC, Kishore SRK, Phanikiran TV, Ravishankar K, Sreedhar SV, Nageshwara Rao N (2009) Integrated geophysical studies for hydrocarbon exploration in eastern part of the Deccan Syneclise, Central, India. NGRI technical report no: NGRI-2009-EXP-679-Volume IIGoogle Scholar
  41. He Z, Liu H, Tang B (2007) Geoelectrical anomaly patterns of reservoir and geoelectrical methods for direct reservoir detection: 77th Annual International Meeting, SEG, Expanded Abstracts, 698–702Google Scholar
  42. He Z, Hu W, Dong W (2010a) Petroleum electromagnetic prospecting advances and case studies in China. Surv Geophys 31:207–224. doi: 10.1007/s10712-009-9093-z CrossRefGoogle Scholar
  43. He Z, Hu Z, Luo W, Wang C (2010b) Mapping reservoirs based on resistivity and induced polarization derived from continuous 3D magnetotelluric profiling: case study from Qaidam basin, China. Geophysics 75(1):B25–B33. doi: 10.1190/1.3279125 CrossRefGoogle Scholar
  44. Hochstein MP (1990) Classification and assessment of geothermal resources. In: Dickson MH, Fanelli M (eds) Small geothermal resources. UNITAR/UNDP Centre for Small Energy Resources, Rome, pp 31–59Google Scholar
  45. Hoversten GM, Cassassuce F, Gasperikova E, Newman GA, Chen J, Rubin Y, Hou Z, Vasco D (2006) Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics 71(3):C1–C13. doi: 10.1190/1.2194510 CrossRefGoogle Scholar
  46. Ichinoseki H (1984) Exploration and development of the Yurihara oil and gas field. J Jpn Assoc Petrol Technol 49:226–233 (in Japanese) CrossRefGoogle Scholar
  47. Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34:8179–8181CrossRefGoogle Scholar
  48. Kaya C, Basokur AT (2010) Magnetotelluric experiments in the Aliaga geothermal field, Western Turkey. In: Proceedings world geothermal congress, Bali, Indonesia, 25–29Google Scholar
  49. Komori S, Utsugi M, Kagiyama T, Inoue H, Chen CH, Chiang HT, Chao BF, Yoshimura R, Kanda W (2014) Hydrothermal system in the Tatun Volcano Group, northern Taiwan, inferred from crustal resistivity structure by audio-magnetotellurics. Prog Earth Planet Sci 1:20CrossRefGoogle Scholar
  50. Krishna VG, Rao NM, Sarkar D (1999) The problem of velocity inversion in refraction seismics: some observations from modelling results. Geophys Prospect 47:341–357CrossRefGoogle Scholar
  51. Lashin A, Arifi NA (2014) Geothermal energy potential of southwestern of Saudi Arabia “exploration and possible power generation”: a case study at Al Khouba area—Jizan. Renew Sustain Energy Rev 30:771–789CrossRefGoogle Scholar
  52. Lashin A, Pipan M, Arifi NA, Bassam AA, Mocnik A, Forte E (2015) Geophysical exploration of the Western Saudi Arabian Geothermal province: first results from the Al-Lith Area. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  53. Layugan DB, Rigor DM, Apuada NA Jr, Banos CFL, Olivar RER (2005) Magnetotelluric (MT) Resistivity surveys in various geothermal systems in Central Philippines. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 AprilGoogle Scholar
  54. Lee TJ, Song Y, Uchida T, Mitsuhata Y, Oh S (2004) Interpretation of 3D magnetotelluric data including sea effect for geothermal exploration in Pohang, Korea. In: Proceedings of the 6th Asian geothermal symposium, 26–29 October, mutual challenges in high and low temperature geothermal resource fields, pp 139–143Google Scholar
  55. Lee TJ, Song Y, Uchida T (2007) Three dimensional magnetotelluric surveys for geothermal development in Pohang, Korea. Explor Geophys 38:89–97CrossRefGoogle Scholar
  56. Lee TJ, Han N, Song Y (2010) Magnetotelluric survey applied to geothermal exploration: an example at Seokmo Island, Korea. Explor Geophys 41:61–68CrossRefGoogle Scholar
  57. Lee TJ, Song Y, Park DW, Jeon J, Yoon WS (2015) Three dimensional geological model of Pohang EGS Pilot Site, Korea. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  58. Leeuwen WAV, Marnette K, Schotting RJ, Muller M (2015) A geothermal exploration MT data set and its 3D inversion using two different codes: an example from Western Turkey. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  59. Mansoori I, Oskooi B, Pederson L (2015) Magnetotelluric signature of anticlines in Iran’s Sehqanat oil field. Tectonophysics 654:101–112CrossRefGoogle Scholar
  60. Mansoori I, Oskooi B, Pederson L, Javaheri R (2016) Three-dimensional modelling of magnetotelluric data to image Sehqanat hydrocarbon reservoir in southwestern Iran. Geophys Prospect 64:753–766CrossRefGoogle Scholar
  61. Maryanto S, Wicaksono AS, Santoso DR, Nadhir A, Gunawah H, Prasodjo E, Suantika IG (1992) Multi geosciences approach at Blawan-Ijen Volcano-Geothermal Complex, East Java, Indonesia to Understand it utilization and hazard. In: Goldschmidt conferenceGoogle Scholar
  62. Matsuo K, Negi T (1999) Oil exploration in the difficult Minami-Noshiro area part 2: Magnetotelluric survey. Lead Edge 18:1411–1413CrossRefGoogle Scholar
  63. Meju MA (2002) Geoelectromagnetic exploration for natural resources: models, case studies and challenges. Surv Geophys 23:133–205CrossRefGoogle Scholar
  64. Merh SS (1995) Geology of Gujarat. Geological Society of India, Bangalore, pp 1–222Google Scholar
  65. Mitsuhata Y, Matsuo K, Minegishi M (1999) Magnetotelluric survey for exploration of a volcanic-rock reservoir in the Yurihara oil and gas field, Japan. Geophys Prospect 47:195–218CrossRefGoogle Scholar
  66. Muffler P, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89CrossRefGoogle Scholar
  67. Munoz G (2014) Exploring for geothermal resources with electromagnetic methods. Surv Geophys 35:101–122CrossRefGoogle Scholar
  68. Mustopa EJ, Furuya S, Jotaki H, Ushijima K (2002) Application of magnetotelluric method to Takigami geothermal field in Kyushu, Japan. Memories of the Faculty of Engineering, Kyushu University, vol 62(4)Google Scholar
  69. Niasari SW, Munoz G, Kholid M, Suhanto E, Ritter O (2012) Magnetotelluric exploration of the Sipoholon geothermal field, Indonesia. 24 Schmucker-Weidelt-Kolloquium, Neustadt an der Weinstra Be, 19–23 SeptemberGoogle Scholar
  70. Nicholson KN (1993) Geothermal fluids. Chemistry and exploration techniques. Springer, BerlinCrossRefGoogle Scholar
  71. Nurhasan Ogawa Y, Ujihara N, Tank SB, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath Kusatsu–Shirane volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planet Space 58:1053–1059CrossRefGoogle Scholar
  72. Ogawa Y, Ichiki M, Kanda W, Mishina M, Asamori K (2014) Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano, NE Japan. Earth Planets Space 66:158CrossRefGoogle Scholar
  73. Oskooi B, Darijani M (2013) 2D inversion of the magnetotelluric data from Mahallat geothermal field in Iran using finite element approach. Arab J Geosci. doi: 10.1007/s12517-013-0893-6 Google Scholar
  74. Oskooi B, Mirzaei M, Mohannadi B, Mohammadzadeh-Moghaddam M, Ghadimi F (2016) Integrated interpretation of the magnetotelluric and magnetic data from Mahallat geothermal field, Iran. Stud Geophys Geod 60:141–161. doi: 10.1007/s11200-014-1235-1 CrossRefGoogle Scholar
  75. Ozawa A, Katahira T, Nakano S, Tsuchiya N, Awata Y (1988) Geology of the Yashima district, with Geological Sheet Map at 1:50,000. Geological Survey of Japan, pp 87 (in Japanese with English abstract) Google Scholar
  76. Pandey D, MacGregor L, Sinha M, Singh S (2008) Feasibility of using the magnetotelluric method for subbasalt imaging at Kachchh, India. Appl Geophys 5(1):74–82. doi: 10.1007/s11770-008-0008-4 CrossRefGoogle Scholar
  77. Pandey D, Singh S, Sinha M, MacGregor L (2009) Structural imaging of Mesozoic sediments of Kachchh, India and their hydrocarbon prospects. Mar Pet Geol 26:1043–1050CrossRefGoogle Scholar
  78. Parnadi WW, Widodo Savitri RW, Zakarsyi A (2014) Magnetotelluric investigations in the way Umpu geothermal prospect area, Lampung province, Indonesia. Int J Technol 3:227–241CrossRefGoogle Scholar
  79. Patro BPK, Sarma SVS (2007) Trap thickness and the subtrappean structures related to mode of eruption in the Deccan plateau of India: results from magnetotellurics. Earth Planet Space 59:75–81CrossRefGoogle Scholar
  80. Patro PK, Abdul Azeez KK, Veeraswamy K, Sarma SVS, Sen MK (2015a) Sub-basalt sediment imaging—the efficacy of magnetotellurics. J Appl Geophys 121:106–115. doi: 10.1016/j.jappgeo.2015.07.010 CrossRefGoogle Scholar
  81. Patro PK, Rao SPE, Reddy KC, Raju K, Borah UK, Sana S, Sarma SVS (2015b) Re-evaluation of the deep electrical structure of Tattapani hot spring area using advanced MT data analysis and 3D modelling approaches. Technical report no. NGRI-2015-EXP-896Google Scholar
  82. Pellerin L, Johnston JM, Hohmann GW (1996) A numerical evaluation of electromagnetic methods in geothermal exploration. Geophysics 61:121–130CrossRefGoogle Scholar
  83. Raharjo IB, Maris V, Wannamaker PE, Chapman DS (2010) Resistivity structures of Lahendong and Kamojang geothermal systems revealed from 3D magnetotelluric inversions, a comparative study. In: Proceedings, world geothermal congress, Bali, Indonesia, 25–29 AprilGoogle Scholar
  84. Rao SPE, Naidu GD, Harinarayana T, Sarma SVS, Gupta AK (2014) An anomalous high conductivity upper crustal body detected underneath the Surajkund hot spring area from a magnetotellric study. J Indian Geophys Union 18(4):425–433Google Scholar
  85. Reyes AN (1999) Interpretation of Schlumberger and magnetotelluric measurements: examples from the Philippines and Iceland. Geothermal Training Programme, Orkustofnun, Grensasvegur 9, IS-108 Reykjavik, IcelandGoogle Scholar
  86. Rezaie AH, Nogole Sadat MA (2004) Fracture modeling in Asmari reservoir of Rag-e Sefid oil field by using multi well image log (FMS/FMI). Iran Int J Sci 5(1):107–121Google Scholar
  87. Rosario RAD Jr, Oanes AF (2010) Controlled source magnetotelluric survey of Mabini geothermal prospect, Mabini, Batangas, Philippines. In: Proceedings world geothermal congress, Bali, Indonesia, 25–29 AprilGoogle Scholar
  88. Rosario RAD Jr, Pastor MS, Malapitan RT (2005) Controlled source magnetotelluric (CSMT) survey of Malabuyoc thermal project, Malabuyoc/Alegria, Cebu, Philippines. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 AprilGoogle Scholar
  89. Sarma SVS, Harinarayana T, Gupta ML, Sarma SR, Kumar R, Sanker Narayan PV (1983) A reconnaissance telluric survey in northern parts of Konkan geothermal province, India. Geophys Res Bull 21(1):91–99Google Scholar
  90. Sarma SVS, Virupakshi G, Murthy DN, Harinarayana T, Sastry TS, Rao MS, Nagarajan N, Veeraswamy K, Sarma MS, Rao SPE, Gupta KRB (1992) Magnetotelluric studies for oil exploration over Deccan Traps, Saurashtra, Gujarat, India. NGRI-92-LITHOS-125Google Scholar
  91. Sarma SVS, Virupakshi G, Harinarayana T, Murthy DN, Someswara Rao M, Sastry RS, Nagarajan N, Sastry TS, Sarma MVC, Rao M, Veeraswamy K, Rao SPE, Gupta KRB, Lingaiah A, Sreenivasulu T, Raju AVSN, Patro BPK, Manoj C, Bansal A, Kumaraswamy VTC, Sannasi SR, Stephen C, Naganjaneyulu K (1998a) Integrated geophysical studies for hydrocarbon exploration Saurashtra, India. NGRI-98-EXP-237Google Scholar
  92. Sarma SVS, Virupakshi G, Harinarayana T, Rao M, Nagarajan N, Someswara Rao M, Sastry TS, Rao SPE, Gupta KRB, Patro BPK, Raju AVSN, Jyoti RS, Srinivasulu T, Lingaiah A (1998b) Magnetotelluric studies in Nagpur-Wardha area. NGRI technical report no: NGRI-98-EXPL-222Google Scholar
  93. Sarma SVS, Virupakshi G, Harinarayana T, Nagarajan N, Someswara Rao M, Murthy DN, Veeraswamy K, Rao M, Rao SPE, Sastry TS, Patro BPK, Raju AVSN, Lingaiah A, Srinivasulu T, Naganjaneyulu K (1998c) Magnetotelluric studies along Nagpur—Belgaum and Morsi-Akot-Harda Profiles. NGRI technical report no: NGRI-98-EXPL-234Google Scholar
  94. Sarvandani MM, Kalateh AN, Unsworth M, Majidi A (2017) Interpretation of magnetotelluric data from the Gachsaran oil field using sharp boundary inversion. J Petrol Sci Eng 149:25–39. doi: 10.1016/j.petrol.2016.10.019 CrossRefGoogle Scholar
  95. Satpal Singh OP, Sar D, Chatterjee SM, Sawa S (2006) Integrated interpretation for sub-basalt imaging in Saurashtra Basin, India. Lead Edge 25:882–885CrossRefGoogle Scholar
  96. Seki K, Kanda W, Ogawa Y, Tanbo T, Kobayashi T, Hino Y, Hase H (2015) Imaging the hydrothermal system beneath the Jigokudani valley, Tateyama volcano, Japan: implications for structures controlling repeated phreatic eruptions from an audio-frequency magnetotelluri survey. Earth Planet Space 67(6):6CrossRefGoogle Scholar
  97. Seki K, Kanda W, Tanbo T, Ohba T, Ogawa Y, Takakura S, Kenji N, Ushioda M, Suzkuki A, Saito Z, Matsunaga Y (2016) Resistivity structure and geochemistry of the Jigokudani Valley hydrothermal system, Mt. Tateyama. Jpn J Volcanol Geotherm Res 325:15–26. doi: 10.1016/j.jvolgeores.2016.06.010 CrossRefGoogle Scholar
  98. Singh B, Arora K (2008) Geophysical exploration for petroleum in the Subtrappean Mesozoic sedimentary formations of India. Mem Geol Soc India 68:237–258Google Scholar
  99. Sinharay RK, Srivastava S, Bhattacharya BB (2001) An analysis of magnetotelluric (MT) data over geothermal region of Bakreshwar, West Bengal. J Geophys 22(1):31–39Google Scholar
  100. Sinharay RK, Srivastava S, Bhattacharya BB (2010) Audiomagnetotelluric studies to trace the hydrological system of thermal fluid flow of Bakreswar Hot Spring, Eastern India: a case history. Geophysics 75(5):B187–B195CrossRefGoogle Scholar
  101. Sircar A, Shah M, Sahajpal S, Vaidya D, Dhale S, Chaudhary A (2015) Geothermal exploration in Gujarat: case study from Dholera. Geotherm Energy 3:22CrossRefGoogle Scholar
  102. Song Y, Lee SK, Kim HC, Kee WS, Park YS, Lim MT, Son JS, Cho SJ, Lim SK, Uchida T, Mitsuhata Y, Lee TJ, Lee H, Rim HR, Hwang S, Park IH (2003) Case study on a low enthalpy geothermal exploration in Pohang Area, Korea. Geosyst Eng 6(2):46–53CrossRefGoogle Scholar
  103. Spichak VV (2005) Three-dimensional resistivity structure of the Minamikayabe geothermal zone revealed by Bayesian inversion of MT data. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 AprilGoogle Scholar
  104. Spichak VV, Manzella A (2009) Electromagnetic sounding of geothermal zones. J Appl Geophys 68:459–478CrossRefGoogle Scholar
  105. Strack KM (2014) Future directions of electromagnetic methods for hydrocarbon applications. Surv Geophys 35:157–177. doi: 10.1007/s10712-013-9237-z CrossRefGoogle Scholar
  106. Strack KM, Pandey PB (2007) Exploration with controlled-source electromagnetic under basalt cover in India. Lead Edge 26:360–363CrossRefGoogle Scholar
  107. Sui XW, Zhang J, Shi FJ, Zhao JC (2011) Evaluation on the geothermal resources in Jingbo Lake Graben of the Dun-Mi Fault Zone in Helongjiang Province. Geoscience 25:377–383 (In Chinese) Google Scholar
  108. Sumintadireja P, Saepuloh A, Irawan D, Junursyah L (2011) Temporal analysis of visible-thermal infrared band and magnetotelluric method to simulate a geothermal sitting at Mt. Ciremai, West Java, Indonesia. In: Proceedings, thirty sixth workshop on geothermal reservoir engineering, Stanford University, Stanford, California, January 31–February 2Google Scholar
  109. Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150CrossRefGoogle Scholar
  110. Tuyen DV, Vu TA, Phong LH, Dat PN, Toan DV, Si LV (2015) Structural features of geothermal field from magnetotelluric survey in Northern Central Region of Vietnam. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  111. Uchida T (1993) Smooth 2D inversion for magnetotelluric data based on statistical criterion ABIC. J Geomagn Geoelectr 45:841–858CrossRefGoogle Scholar
  112. Uchida T (2003) Application of 3D Inversion to magnetotelluric data in the Ogiri Geothermal Area, Japan. Geotherm Resour Counc Trans 27:12–15Google Scholar
  113. Uchida T (2005) Three dimensional magnetotelluric investigation in geothermal fields in Japan and Indonesia. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 AprilGoogle Scholar
  114. Uchida T, Ogawa Y (1993) Development of FORTRAN code of two-dimensional magnetotelluric inversion with smoothness constraint. Geological survey of Japan, open-file report no. 205, p 115Google Scholar
  115. Uchida T, Song Y, Lee TJ, Mitsuhata Y, Lim SK, Lee SK (2005) Magnetotelluric survey in an extremely noisy environment at the Pohang low enthalpy geothermal area, Korea. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 AprilGoogle Scholar
  116. Uchida T, Takakura S, Ueda T, Adachi M, Ozeki H, Kamada K, Sato T (2011) 3D magnetotelluric survey at the Yanaizu-Nishiyama geothermal field, Northen Japan. In: Proceedings of the 9th Asian geothermal symposium, 7–9 NovemberGoogle Scholar
  117. Umeda K, Asamori K, Negi T, Ogawa Y (2006) Magnetotelluric imaging of crustal magma storage beneath the Mesozoic crystalline mountains in a nonvolcanic region, northeast Japan. Geochem Geophys Geosyst 7:Q08005. doi: 10.1029/10052006GC001247 Google Scholar
  118. Unsworth M (2005) New developments in conventional hydrocarbon exploration with electromagnetic methods. Can Soc Explor Geophys Rec 30(4):34–38Google Scholar
  119. Ushijima K, Mustopa EJ, Jotaki H, Mizunaga H (2005) Magnetotelluric soundings in the Takigami geothermal area, Japan. In: Proceedings world geothermal congress, Antalya, Turkey, 24–29 AprilGoogle Scholar
  120. Waseda A, Omokawa M (1990) Generation, migration and accumulation of hydrocarbons in the Yurihara oil and gas field. J Jpn Assoc Petrol Technol 55:233–244 (in Japanese with English abstract) CrossRefGoogle Scholar
  121. Wright PM, Ward SH, Ross HP, West RC (1985) State of the art geophysical exploration for geothermal resources. Geophysics 50:2666–2696CrossRefGoogle Scholar
  122. Wu G, Hu X, Huo G, Zhou X (2012) Geophysical exploration for geothermal resources: an application of MT and CSAMT in Jiangxia, Wuhan, China. J Earth Sci 23(5):757–767CrossRefGoogle Scholar
  123. Yamane K, Ohsato K, Ohminato T, Kim HJ (2000) Three dimensional magnetotelluric investigation in Kakkonda geothermal area, Japan. In: Proceedings world geothermal congress, Kyushu-Tohoku, Japan, May 28–June 10Google Scholar
  124. Zakharova OK, Spichak VV, Rybin AK, Batalev VY, Goidina AG (2007) Estimation of the correlation between magnetotelluric and geothermal data in the Bishkek geodynamic research area, Izvestiya. Phys Solid Earth 43(4):35–42CrossRefGoogle Scholar
  125. Zarkasyi A, Rahadinata T, Suhanto E, Widodo S (2015) Investigation of geothermal structures of the Kadidia Area, Indonesia, using the magnetotelluric method. In: Proceedings world geothermal congress, Melbourne, Australia, 19–25 AprilGoogle Scholar
  126. Zhang K, Wei W, Lu Q, Dong H, Li Y (2014) Theoretical assessment of 3-D magnetotelluric method for oil and gas exploration: synthetic examples. J Appl Geophys 106:23–36CrossRefGoogle Scholar
  127. Zhang L, Hao T, Xiao Q, Wang J, Zhou L, Qi M, Cui X, Cai N (2015) Magnetotelluric investigation of the geothermal anomaly in Hailin, Mudanjiang, northeastern China. J Appl Geophys 118:47–65CrossRefGoogle Scholar
  128. Ziolkowski A, Hobbs B, Wright D (2002) First direct hydrocarbon detection and reservoir monitoring using transient electromagnetic. First Break 20:224–225Google Scholar
  129. Ziolkowski A, Hanssen P, Gatliff R, Jakubowicz H, Dobson A, Hampson G, Li X, Liu E (2003) Use of low frequencies for sub-basalt imaging. Geophys Prospect 51(3):169–182CrossRefGoogle Scholar
  130. Zonge KL, Sauck WA, Sumner JS (1972) Comparison of time, frequency and phase measurements in induced polarization. Geophys Prospect 20:626–648CrossRefGoogle Scholar
  131. Zutshi PL (1991) The Deccan Trap-its implication on hydrocarbon exploration in western India. Bull Oil Nat Gas Commun 28(2):90–95Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.CSIR-National Geophysical Research InstituteHyderabadIndia

Personalised recommendations