Surveys in Geophysics

, Volume 38, Issue 5, pp 963–1004 | Cite as

On Joint Modelling of Electrical Conductivity and Other Geophysical and Petrological Observables to Infer the Structure of the Lithosphere and Underlying Upper Mantle

  • J. FulleaEmail author


This review paper focuses on joint modelling and interpretation of electromagnetic data and other geophysical and petrological observables. In particular, integrated geophysical–petrological modelling approaches, where the electrical conductivity and other physical properties of rocks are required to be linked by the common subsurface thermochemical conditions within a self-consistent thermodynamic framework, are reviewed. The paper gives an overview of the main geophysical electromagnetic techniques/data sets employed in lithospheric and mantle imaging including recent advances using satellite data, and an up-to-date summary of the most relevant laboratory experiments regarding the electrical conductivity of upper mantle minerals for various temperature–pressure–water conditions. The sensitivity of electrical conductivity and other geophysical parameters (density, seismic velocities) of mantle rocks to changes in temperature and composition are presented based on a Monte Carlo method parameter exploration. Finally, a case study in Central Tibet is presented where both seismological (long-period surface wave phase velocities) and electromagnetic (magnetotelluric) data—simultaneously including the constraints offered by topography, surface heat flow and mantle xenoliths—have been integrated. The modelling is based on a self-consistent petrological-geophysical thermodynamic framework where mantle properties are calculated as a function of temperature, pressure, and composition. The Tibetan case study offers an excellent opportunity to illustrate the different and complementary sensitivities of the various data sets used and to show how integrated thermochemical models of the lithosphere can help understand settings with a complex tectonic evolution.


Electrical conductivity Integrated geophysical–petrological modelling Lithosphere Magnetotelluric Seismics Density Mantle composition Water content 



The author is thankful to Ian Ferguson and the other organizers of the 23rd Electromagnetic Induction Workshop in Chiang Mai for inviting this review paper. Topical editor Ute Weckmann, Amir Khan, and one anonymous reviewer helped to improve this paper with their constructive criticism. J. Fullea has received funding from the People Programme (Marie Curie Actions) of the European Union’s H2020-MSCA-IF-2014 programme (REA Grant agreement no 657357) and Science Foundation Ireland grant 16/ERCD/4303 that supported the work presented here. Finally, I want to thank Olivia for giving me the strength and inspiration to carry on in the most difficult circumstances.


  1. Adam JMC, Lebedev S (2012) Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements. Geophys J Int 191(1):155–174CrossRefGoogle Scholar
  2. Adetunji AQ, Ferguson IJ, Jones AG (2015) Reexamination of magnetotelluric responses and electrical anisotropy of the lithospheric mantle in the Grenville Province, Canada. J Geophys Res Solid Earth 120(3):1890–1908CrossRefGoogle Scholar
  3. Afonso JC, Ranalli G, Fernàndez M (2005) Thermal expansivity and elastic properties of the lithospheric mantle: results from mineral physics of composites. Phys Earth Planet Inter 149:279–306CrossRefGoogle Scholar
  4. Afonso JC, Fernàndez M, Ranalli G, Griffin WL, Connolly JAD (2008) Integrated geophysical–petrological modeling of the lithosphere and sublithospheric upper mantle: methodology and applications. Geochem Geophys Geosyst 9:Q05008. doi: 10.1029/02007GC001834 CrossRefGoogle Scholar
  5. Afonso JC, Ranalli G, Fernàndez M, Griffin WL, O’Reilly SY, Faul U (2010) On the Vp/Vs–Mg# correlation in mantle peridotites: implications for the identification of thermal and compositional anomalies in the upper mantle. Earth Planet Sci Lett 289:606–618CrossRefGoogle Scholar
  6. Afonso J, Fullea J, Griffin W, Yang Y, Jones A, Connolly JD, O’Reilly S (2013a) 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables. J Geophys Res Solid Earth 118:2586–2617CrossRefGoogle Scholar
  7. Afonso JC, Fullea J, Yang Y, Connolly J, Jones A (2013b) 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: general methodology and resolution analysis. J Geophys Res Solid Earth 118:1650–1676CrossRefGoogle Scholar
  8. Agius MR, Lebedev S (2013) Tibetan and Indian lithospheres in the upper mantle beneath tibet: evidence from broadband surface-wave dispersion. Geochem Geophys Geosyst 14:4260–4281CrossRefGoogle Scholar
  9. Alvarez-Aramberri J, Pardo D (2017) Dimensionally adaptive hp-finite element simulation and inversion of 2D magnetotelluric measurements. J Comput Sci 18:95–105CrossRefGoogle Scholar
  10. Anderson DL (2000) The thermal state of the upper mantle; no role for mantle plumes. Geophys Res Lett 27(22):3623–3626CrossRefGoogle Scholar
  11. Anderson DL, Sammis C (1970) Partial melting in the upper mantle. Phys Earth Planet Inter 3:41–50CrossRefGoogle Scholar
  12. Ardia P, Hirschmann M, Withers A, Tenner T (2012) H2O storage capacity of olivine at 5–8 GPa and consequences for dehydration partial melting of the upper mantle. Earth Planet Sci Lett 345:104–116CrossRefGoogle Scholar
  13. Asimow PD, Dixon JE, Langmuir CH (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosyst 5:Q01E16. doi: 10.1029/2003GC000568 CrossRefGoogle Scholar
  14. Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett 31:L20611. doi: 10.1029/2004GL021341 CrossRefGoogle Scholar
  15. Baba K, Utada H, Goto T-N, Kasaya T, Shimizu H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Inter 183:44–62CrossRefGoogle Scholar
  16. Bai Q, Kohlstedt D (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Miner 19:460–471CrossRefGoogle Scholar
  17. Bali E, Bolfan-Casanova N, Koga K (2008) Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet Sci Lett 268:354–363CrossRefGoogle Scholar
  18. Baptiste V, Tommasi A, Demouchy S (2012) Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa. Lithos 149:31–50CrossRefGoogle Scholar
  19. Barry TL, Saunders AD, Kempton PD, Windley BF, Pringle MS, Dorjnamjaa D, Saandar S (2003) Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. J Pet 44(1):55–91CrossRefGoogle Scholar
  20. Bell DR, Rossman GR (1992) The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib Mineral Petrol 111:161–178CrossRefGoogle Scholar
  21. Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Mineral 80:465–474CrossRefGoogle Scholar
  22. Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108(B2):2105. doi: 10.1029/2001JB000679 CrossRefGoogle Scholar
  23. Bell DR, Rossman GR, Moore RO (2004) Abundance and partitioning of OH in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J Petrol 45:1539–1564CrossRefGoogle Scholar
  24. Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) American geophysical union handbook of physical constants. AGU, New York, pp 205–228Google Scholar
  25. Cammarano F, Guerri M (2017) Global thermal models of the lithosphere. Geophys J Int 210(1):56–72CrossRefGoogle Scholar
  26. Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter 138:197–222CrossRefGoogle Scholar
  27. Caricchi L, Gaillard F, Mecklenburgh J, Le Trong E (2011) Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for electrical anisotropy in the oceanic low velocity zone. Earth Planet Sci Lett 302(1):81–94CrossRefGoogle Scholar
  28. Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Mineral Geochem 72:603–639CrossRefGoogle Scholar
  29. Chambers K, Woodhouse J, Deuss A (2005) Topography of the 410-km discontinuity from PP and SS precursors. Earth Planet Sci Lett 235:610–622CrossRefGoogle Scholar
  30. Chantel J, Manthilake G, Andrault D, Novella D, Yu T, Wang Y (2016) Experimental evidence supports mantle partial melting in the asthenosphere. Sci Adv 2(5):e1600246CrossRefGoogle Scholar
  31. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  32. Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:Q10014. doi: 10.1029/2009GC002540 CrossRefGoogle Scholar
  33. Connolly J, Kerrick D (2002) Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth. Earth Planet Sci Lett 204:61–74CrossRefGoogle Scholar
  34. Connolly JAD, Khan A (2016) Uncertainty of mantle geophysical properties computed from phase equilibrium models. Geophys Res Lett 43(10):5026–5034CrossRefGoogle Scholar
  35. Constable S (2006) SEO3: a new model of olivine electrical conductivity. Geophys J Int 166:435–437CrossRefGoogle Scholar
  36. Dai L, Karato S-I (2009a) Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc Jpn Acad Ser B 85:466–475CrossRefGoogle Scholar
  37. Dai L, Karato S-I (2009b) Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys Earth Planet Inter 176:83–88CrossRefGoogle Scholar
  38. Dai L, Karato S-I (2014a) The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Phys Earth Planet Inter 232:51–56CrossRefGoogle Scholar
  39. Dai L, Karato S-I (2014b) High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet Sci Lett 408:79–86CrossRefGoogle Scholar
  40. Dai L, Li H, Liu C, Su G, Shan S (2006) Experimental measurement of the electrical conductivity of pyroxenite at high temperature and high pressure under different oxygen fugacities. High Press Res Int J 26:193–202CrossRefGoogle Scholar
  41. Dai L, Li H, Hu H, Shan S, Jiang J, Hui K (2012) The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib Mineral Petrol 163:689–700CrossRefGoogle Scholar
  42. Dai L, Li H, Hu H, Jiang J, Hui K, Shan S (2013) Electrical conductivity of Alm 82 Py 15 Grs 3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 608:1086–1093CrossRefGoogle Scholar
  43. Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295:305–313CrossRefGoogle Scholar
  44. Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240:402–425CrossRefGoogle Scholar
  45. Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355CrossRefGoogle Scholar
  46. Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34:429–432CrossRefGoogle Scholar
  47. Didana YL, Thiel S, Heinson G (2014) Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia. Geophys Res Lett 41:3089–3095CrossRefGoogle Scholar
  48. Dobson DP, Brodholt JP (2000) The electrical conductivity and thermal profile of the Earth’s mid-mantle. Geophys Res Lett 27(15):2325–2328CrossRefGoogle Scholar
  49. Doucet LS, Peslier AH, Ionov DA, Brandon AD, Golovin AV, Goncharov AG, Ashchepkov IV (2014) High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim Cosmochim Acta 137:159–187CrossRefGoogle Scholar
  50. Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32(24). doi: 10.1029/2005GL023879 CrossRefGoogle Scholar
  51. Duba A (1976) Are laboratory electrical conductivity data relevant to the Earth. Acta Geodaet Geophys Montanist Acad Sci Hung 11:485–496Google Scholar
  52. Eaton DW, Darbyshire F, Evans RL, Grütter H, Jones AG, Yuan X (2009) The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109:1–22CrossRefGoogle Scholar
  53. Fainberg E, Kuvshinov A, Singer BS (1990) Electromagnetic induction in a spherical Earth with non-uniform oceans and continents in electric contact with the underlying medium—II. Bimodal global geomagnetic sounding of the lithosphere. Geophys J Int 102:283–286CrossRefGoogle Scholar
  54. Farla R, Peach C, ten Grotenhuis S (2010) Electrical conductivity of synthetic iron-bearing olivine. Phys Chem Miner 37:167–178CrossRefGoogle Scholar
  55. Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134CrossRefGoogle Scholar
  56. Ferot A, Bolfan-Casanova N (2012) Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett 349:218–230CrossRefGoogle Scholar
  57. Fujii I, Schultz A (2002) The 3D electromagnetic response of the Earth to ring current and auroral oval excitation. Geophys J Int 151:689–709CrossRefGoogle Scholar
  58. Fullea J, Afonso JC, Connolly JAD, Fernàndez M, García-Castellanos D, Zeyen H (2009) LitMod3D: an interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochem Geophys Geosyst 10:Q08019CrossRefGoogle Scholar
  59. Fullea J, Fernàndez M, Afonso JC, Vergés J, Zeyen H (2010) The structure and evolution of the lithosphere–asthenosphere boundary beneath the Atlantic–Mediterranean Transition Region. Lithos 120:74–95CrossRefGoogle Scholar
  60. Fullea J, Muller MR, Jones AG (2011) Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: application to the Kaapvaal Craton and Rehoboth Terrane, Southern Africa. J Geophys Res 116:B10202. doi: 10.1029/2011JB008544 CrossRefGoogle Scholar
  61. Fullea J, Lebedev S, Agius MR, Jones AG, Afonso JC (2012) Lithospheric structure in the Baikal–central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation. Geochem Geophys Geosyst 13:Q0AK09. doi: 10.1029/2012GC004138 CrossRefGoogle Scholar
  62. Fullea J, Muller M, Jones A, Afonso J (2014) The lithosphere–asthenosphere system beneath Ireland from integrated geophysical–petrological modeling II: 3D thermal and compositional structure. Lithos 189:49–64CrossRefGoogle Scholar
  63. Fullea J, Camacho A, Negredo A, Fernández J (2015a) The canary islands hot spot: new insights from 3D coupled geophysical-petrological modelling of the lithosphere and uppermost mantle. Earth Planet Sci Lett 409:71–88CrossRefGoogle Scholar
  64. Fullea J, Rodriguez J, Charco M, Negredo A, Martinec Z, Villaseñor A (2015b) Perturbing effects of sub-lithospheric mass anomalies in GOCE gravity gradient and other potential field data modelling: application to the Atlantic-Mediterranean transition zone. Int J Appl Earth Obs Geoinform, Special volume: GOCE 35:54–69CrossRefGoogle Scholar
  65. Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215–228CrossRefGoogle Scholar
  66. Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365CrossRefGoogle Scholar
  67. Gardés E, Gaillard F, Tarits P (2014) Toward a unified hydrous olivine electrical conductivity law. Geochem Geophys Geosyst 15:4984–5000CrossRefGoogle Scholar
  68. Gatzemeier A, Tommasi A (2006) Flow and electrical anisotropy in the upper mantle: finite-element models constraints on the effects of olivine crystal preferred orientation and microstructure. Phys Earth Planet Inter 158:92–106CrossRefGoogle Scholar
  69. Gavrilenko P (2008) Water solubility in diopside. Ph.D thesis, Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, GermanyGoogle Scholar
  70. Glover PW (2010) A generalized Archie’s law for n phases. Geophysics 75:E247–E265CrossRefGoogle Scholar
  71. Goes S, Govers R, Vacher P (2000) Shallow mantle temperatures under Europe from P and S wave tomography. J Geophys Res Solid Earth 105:11153–11169CrossRefGoogle Scholar
  72. Grant K, Ingrin J, Lorand J, Dumas P (2007) Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol 154:15–34CrossRefGoogle Scholar
  73. Grayver AV, Schnepf NR, Kuvshinov AV, Sabaka TJ, Manoj C, Olsen N (2016) Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary. Sci Adv 2(9):e1600798CrossRefGoogle Scholar
  74. Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28:283–285CrossRefGoogle Scholar
  75. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140CrossRefGoogle Scholar
  76. Heise W, Ellis S (2016) On the coupling of geodynamic and resistivity models: a progress report and the way forward. Surv Geophys 37:81–107CrossRefGoogle Scholar
  77. Heise W, Bibby HM, Caldwell TG, Bannister SC, Ogawa Y, Takakura S, Uchida T (2007) Melt distribution beneath a young continental rift: the Taupo Volcanic Zone, New Zealand. Geophys Res Lett 34:L14313. doi: 10.1029/2007GL029629 CrossRefGoogle Scholar
  78. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher C, Fitton J, Cheadle M, Saunders A (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst 8:Q02006. doi: 10.1029/2006GC001390 CrossRefGoogle Scholar
  79. Hinze E (1982) Laboratory electrical conductivity measurements on mantle relevant minerals. Geophys Surv 4:337–352CrossRefGoogle Scholar
  80. Hinze H, Will G, Cemic L (1981) Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Phys Earth Planet Inter 25:245–254CrossRefGoogle Scholar
  81. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  82. Hirschmann MM, Aubaud C, Withers AC (2005) Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet Sci Lett 236:167–181CrossRefGoogle Scholar
  83. Hirschmann MM, Tenner T, Aubaud C, Withers A (2009) Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet Inter 176:54–68CrossRefGoogle Scholar
  84. Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108CrossRefGoogle Scholar
  85. Ichiki M, Ogawa Y, Kaida T, Koyama T, Uyeshima M, Demachi T, Hirahara S, Honkura Y, Kanda W, Kono T (2015) Electrical image of subduction zone beneath northeastern Japan. J Geophys Res Solid Earth 120:7937–7965CrossRefGoogle Scholar
  86. Ionov D (2002) Mantle structure and rifting processes in the Baikal–Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics 351:41–60CrossRefGoogle Scholar
  87. Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet Sci Lett 86:365–376CrossRefGoogle Scholar
  88. Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res 107(B12):2360. doi: 10.1029/2001JB001225 CrossRefGoogle Scholar
  89. Jackson I, Faul UH (2010) Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys Earth Planet Inter 183:151–163CrossRefGoogle Scholar
  90. Jegen MD, Hobbs RW, Tarits P, Chave A (2009) Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: preliminary results of sub-basalt imaging off the Faroe Shelf. Earth Planet Sci Lett 282:47–55CrossRefGoogle Scholar
  91. Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. In: van der Hilst RD, McDonough WF (eds) Developments in geotectonics. Elsevier, Amsterdam, pp 57–80Google Scholar
  92. Jones AG (2016) Proton conduction and hydrogen diffusion in olivine: an attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity. Phys Chem Miner 43:237–265CrossRefGoogle Scholar
  93. Jones AG, Evans RL, Eaton DW (2009a) Velocity–conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin–Shtrikman extremal bounds. Lithos 109:131–143CrossRefGoogle Scholar
  94. Jones AG, Evans RL, Muller MR, Hamilton MP, Miensopust MP, Garcia X, Cole P, Ngwisanyi T, Hutchins D, Fourie C (2009b) Area selection for diamonds using magnetotellurics: examples from Southern Africa. Lithos 112:83–92CrossRefGoogle Scholar
  95. Jones AG, Plomerova J, Korja T, Sodoudi F, Spakman W (2010) Europe from the bottom up: a statistical examination of the central and northern European lithosphere–asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos 120:14–29CrossRefGoogle Scholar
  96. Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst 13:Q06010. doi: 10.1029/2012GC004055 CrossRefGoogle Scholar
  97. Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273CrossRefGoogle Scholar
  98. Karato S-I (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423CrossRefGoogle Scholar
  99. Karato S-I (2012) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, CambridgeGoogle Scholar
  100. Karato S-I (2015) Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine. Phys Earth Planet Inter 248:94–98CrossRefGoogle Scholar
  101. Karato S-I, Dai L (2009) Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys Earth Planet Inter 174:19–21CrossRefGoogle Scholar
  102. Karato S-I, Wang D (2013) Electrical conductivity of minerals and rocks. In: Karato S-I (ed) Physics and Chemistry of the deep earth. Wiley, Chichester. doi: 10.1002/9781118529492.ch5 CrossRefGoogle Scholar
  103. Karato S-I, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778CrossRefGoogle Scholar
  104. Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4(9):1073. doi: 10.1029/2002GC000433 CrossRefGoogle Scholar
  105. Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T, Araki E, Suyehiro K (2009) Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science 324:499–502CrossRefGoogle Scholar
  106. Kelbert A, Schultz A, Egbert G (2009) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460:1003–1006CrossRefGoogle Scholar
  107. Kennett BLN, Jackson I (2009) Optimal equations of state for mantle minerals from simultaneous non-linear inversion of multiple datasets. Phys Earth Planet Inter 176:98–180. doi: 10.1016/j.pepi.2009.04.005 CrossRefGoogle Scholar
  108. Khan A (2016) On Earth’s mantle constitution and structure from joint analysis of geophysical and laboratory-based data: an example. Surv Geophys 37:149–189CrossRefGoogle Scholar
  109. Khan A, Shankland T (2012) A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett 317:27–43CrossRefGoogle Scholar
  110. Khan A, Connolly JAD, Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res 111:B10102. doi: 10.1029/2006JB004270 CrossRefGoogle Scholar
  111. Khan A, Connolly J, Maclennan J, Mosegaard K (2007) Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int 168:243–258CrossRefGoogle Scholar
  112. Khan A, Zunino A, Deschamps F (2013) Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling. J Geophys Res 118:5285–5306. doi: 10.1002/jgrb50304 CrossRefGoogle Scholar
  113. Kind R, Yuan X, Saul J, Nelson D, Sobolev S, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298:1219–1221CrossRefGoogle Scholar
  114. Koch S, Kuvshinov A (2013) Global 3-D EM inversion of Sq variations based on simultaneous source and conductivity determination: concept validation and resolution studies. Geophys J Int 195(1):98–116CrossRefGoogle Scholar
  115. Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogene and intrinsic point defects in olivine. Z Phys Chem 207:147–162CrossRefGoogle Scholar
  116. Kohlstedt D, Keppler H, Rubie D (1996) Solubility of water in the α, β and γ phases of (Mg, Fe) 2SiO4. Contrib Mineral Petrol 123:345–357CrossRefGoogle Scholar
  117. Korja T (2007) How is the European lithosphere imaged by magnetotellurics? Surv Geophys 28:239–272CrossRefGoogle Scholar
  118. Kovácks I, Green DH, Rosenthal A, Hermann J, O’neill HSC, Hibberson WO, Udvardi B (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol 53(10):2067–2093CrossRefGoogle Scholar
  119. Koyama T, Khan A, Kuvshinov A (2014) Three-dimensional electrical conductivity structure beneath Australia from inversion of geomagnetic observatory data: evidence for lateral variations in transition-zone temperature, water content and melt. Geophys J Int 196:1330–1350CrossRefGoogle Scholar
  120. Kozlovskaya E, Hjelt SE (2000) Modeling of elastic and electrical properties of solid–liquid rock system with fractal microstructure. Phys Chem Earth Part A 25:195–200CrossRefGoogle Scholar
  121. Kumar P, Yuan X, Kind R, Ni J (2006) Imaging the colliding Indian and Asian lithospheric plates beneath tibet. J Geophys Res 111:B06308. doi: 10.1029/2005JB003930 Google Scholar
  122. Kuskov OL, Fabrichnaya OB (1994) Constitution of the Moon: 2. Composition and seismic properties of the lower mantle. Phys Earth Planet Inter 83(3–4):197–216CrossRefGoogle Scholar
  123. Kuskov O, Kronrod V, Prokofyev A, Pavlenkova N (2014) Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615:154–166CrossRefGoogle Scholar
  124. Kuvshinov A (2012) Deep electromagnetic studies from land, sea, and space: progress status in the past 10 years. Surv Geophys 33:169–209CrossRefGoogle Scholar
  125. Kuvshinov A, Junge A, Utada H (2006) 3-D modelling the electric field due to ocean tidal flow and comparison with observations. Geophys Res Lett 33:L06314. doi: 10.1029/2005GL025043 Google Scholar
  126. Lallemant HA, Mercier JC, Carter N, Ross J (1980) Rheology of the upper mantle: inferences from peridotite xenoliths. Tectonophysics 70:85–113CrossRefGoogle Scholar
  127. Laštovičková, M (1991) A review of laboratory measurements of the electrical conductivity of rocks and minerals. Phys Earth Planet Inter 66(1-2):1–11CrossRefGoogle Scholar
  128. Laumonier M, Scaillet B, Pichavant M, Champallier R, Andujar J, Arbaret L (2014) On the conditions of magma mixing and its bearing on andesite production in the crust. Nat Commun 5:5607CrossRefGoogle Scholar
  129. Laumonier M, Farla R, Frost DJ, Katsura T, Marquardt K, Bouvier AS, Baumgartner LP (2017) Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet Sci Lett 463:286–297CrossRefGoogle Scholar
  130. Le Pape F, Jones AG, Unsworth MJ, Vozar J, Wei W, Jin S, Ye G, Jing J, Dong H, Zhang L (2015) Constraints on the evolution of crustal flow beneath Northern Tibet. Geochem Geophys Geosyst 16:4237–4260CrossRefGoogle Scholar
  131. Ledo J, Jones AG (2005) Upper mantle temperature determined from combining mineral composition, electrical conductivity laboratory studies and magnetotelluric field observations: application to the intermontane belt, Northern Canadian Cordillera. Earth Planet Sci Lett 236:258–268CrossRefGoogle Scholar
  132. Ledo J, Queralt P, Martí A, Jones AG (2002) Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution. Geophys J Int 150(1):127–139CrossRefGoogle Scholar
  133. Li Y-H, Wu Q-J, Tian X-B, Zeng R-S, Zhang R-Q, Li H-G (2006) Crustal structure beneath Qiangtang and Lhasa terrane from receiver function. Acta Seismol Sin 19:633–642CrossRefGoogle Scholar
  134. Liu C-Z, Wu F-Y, Chung S-L, Zhao Z-D (2011) Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology 39:923–926CrossRefGoogle Scholar
  135. Love JJ, Rigler EJ (2014) The magnetic tides of Honolulu. Geophys J Int 197(3):1335–1353CrossRefGoogle Scholar
  136. Lu R, Keppler H (1997) Water solubility in pyrope to 100 kbar. Contrib Mineral Petrol 129:35–42CrossRefGoogle Scholar
  137. Mandolesi E, Jones AG (2014) Magnetotelluric inversion based on mutual information. Geophys J Int 199:242–252CrossRefGoogle Scholar
  138. Martí A (2014) The role of electrical anisotropy in magnetotelluric responses: from modelling and dimensionality analysis to inversion and interpretation. Surv Geophys 35(1):179–218CrossRefGoogle Scholar
  139. Matas J, Bass J, Ricard Y, Mattern E, Bukowinski MST (2007) On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys J Int 170:764–780. doi: 10.1111/j.1365246X.2007.03454.x CrossRefGoogle Scholar
  140. Maus S, Kuvshinov A (2004) Ocean tidal signals in observatory and satellite magnetic measurements. Geophys Res Lett 31:L15313. doi: 10.1029/2004GL020090 CrossRefGoogle Scholar
  141. Maxwell-Garnett JCM (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 203:385–420CrossRefGoogle Scholar
  142. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  143. Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315:364–368CrossRefGoogle Scholar
  144. Miller KJ, Montési LG, Zhu WL (2015) Estimates of olivine–basaltic melt electrical conductivity using a digital rock physics approach. Earth Planet Sci Lett 432:332–341CrossRefGoogle Scholar
  145. Minster JB, Anderson DL (1981) A model of dislocation-controlled rheology for the mantle. Philos Trans R Soc Lond Ser A Math Phys Sci 299:319–356CrossRefGoogle Scholar
  146. Mookherjee M, Karato S-I (2010) Solubility of water in pyrope-rich garnet at high pressures and temperature. Geophys Res Lett 37:L03310CrossRefGoogle Scholar
  147. Moorkamp M, Jones AG, Eaton DW (2007) Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible?. Geophys Res Lett 34:L16311. doi: 10.1029/2007GL030519 CrossRefGoogle Scholar
  148. Moorkamp M, Jones AG, Fishwick S (2010) Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. J Geophys Res 115:B04318. doi: 10.1029/2009JB006369 CrossRefGoogle Scholar
  149. Mosenfelder JL, Deligne NI, Asimow PD, Rossman GR (2006) Hydrogen incorporation in olivine from 2 to 12 GPa. Am Mineral 91:285–294CrossRefGoogle Scholar
  150. Muller MR, Jones AG, Evans RL, Grütter HS, Hatton C, Garcia X, Hamilton MP, Miensopust MP, Cole P, Ngwisanyi T, Hutchins D, Fourie CJ, Jelsma HA, Evans SF, Aravanis T, Pettit W, Webb SJ, Wasborg J (2009) Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, Southern Africa: constraints from broadband magnetotellurics. Lithos 112:93–105CrossRefGoogle Scholar
  151. Murch G (1983) The exact Nernst-Einstein equations and the interpretation of cross phenomenological coefficients in unary, binary, and ambipolar systems. Radiat Eff 73:299–305CrossRefGoogle Scholar
  152. Neska A (2016) Conductivity anomalies in central Europe. Surv Geophys 37:5–26CrossRefGoogle Scholar
  153. Ni H, Keppler H, Behrens H (2011) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Mineral Petrol 162:637–650CrossRefGoogle Scholar
  154. Novella D, Frost DJ, Hauri EH, Bureau H, Raepsaet C, Roberge M (2014) The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet Sci Lett 400:1–13CrossRefGoogle Scholar
  155. Novella D, Bolfan-Casanova N, Nestola F, Harris JW (2015) H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: implications for the water content of cratonic lithosphere peridotites. Lithos 230:180–183CrossRefGoogle Scholar
  156. Nover G (2005) Electrical properties of crustal and mantle rocks—a review of laboratory measurements and their explanation. Surv Geophys 26:593–651CrossRefGoogle Scholar
  157. Olsen N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, Chulliat A, Doornbos E, Da Encarnação JT, Hamilton B, Hulot G (2013) The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planets Space 65:1189–1200CrossRefGoogle Scholar
  158. Omura K, Kurita K, Kumazawa M (1989) Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures. Phys Earth Planet Inter 57:291–303CrossRefGoogle Scholar
  159. Patterson M (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar minerals. Bull Mineral 105:20–29Google Scholar
  160. Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res 197:239–258CrossRefGoogle Scholar
  161. Peslier AH, Bizimis M (2015) Water in Hawaiian peridotite minerals: a case for a dry metasomatized oceanic mantle lithosphere. Geochem Geophys Geosyst 16:1211–1232CrossRefGoogle Scholar
  162. Peslier AH, Luhr JF (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242:302–319CrossRefGoogle Scholar
  163. Peslier AH, Luhr JF, Post J (2002) Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett 201:69–86CrossRefGoogle Scholar
  164. Peslier AH, Woodland AB, Bell DR, Lazarov M (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467:78–81CrossRefGoogle Scholar
  165. Piazzoni AS, SteinleNeumann G, Bunge H-P, Dolejs D (2007) A mineralogical model for density and elasticity of the Earth’s mantle. Geochem Geophys Geosyst 8:Q11010. doi: 10.1029/2007GC001697 CrossRefGoogle Scholar
  166. Pitzer KS, Sterner SM (1995) Equations of state valid continuously from zero to extreme pressures with H2O and CO2 as examples. Int J Thermophys 16:511–518CrossRefGoogle Scholar
  167. Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181:103–111CrossRefGoogle Scholar
  168. Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys 35:41–84CrossRefGoogle Scholar
  169. Pommier A, Gaillard F, Pichavant M, Scaillet B (2008) Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. J Geophys Res 113:B05205CrossRefGoogle Scholar
  170. Pommier A, Leinenweber K, Kohlstedt DL, Qi C, Garnero EJ, Mackwell SJ, Tyburczy JA (2015) Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system. Nature 522(7555):202–206CrossRefGoogle Scholar
  171. Püthe C, Kuvshinov A (2014) Mapping 3-D mantle electrical conductivity from space: a new 3-D inversion scheme based on analysis of matrix Q-responses. Geophys J Int 197:768–784CrossRefGoogle Scholar
  172. Ricard Y, Mattern E, Matas J (2005) Synthetic tomographic images of slabs from mineral physics, Washington DC. Am Geophys Union Geophys Monogr Ser 160:283–300. doi: 10.1029/160GM17 Google Scholar
  173. Ringwood AE (1975) Composition and petrology of the earth’s mantle/A. E. Ringwood. McGraw-Hill, New YorkGoogle Scholar
  174. Romano C, Poe BT, Kreidie N, McCammon CA (2006) Electrical conductivities of pyrope–almandine garnets up to 19 GPa and 1700 °C. Am Mineral 91:1371–1377CrossRefGoogle Scholar
  175. Roux E, Moorkamp M, Jones AG, Bischoff M, Endrun B, Lebedev S, Meier T (2011) Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure: application to data from central Germany. Geophys Res Lett 38:L05304. doi: 10.1029/2010GL046358 CrossRefGoogle Scholar
  176. Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys J Int 159:521–547CrossRefGoogle Scholar
  177. Sabaka TJ, Tyler RH, Olsen N (2016) Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry. Geophys Res Lett 43:3237–3245CrossRefGoogle Scholar
  178. Sakurai M, Tsujino N, Sakuma H, Kawamura K, Takahashi E (2014) Effects of Al content on water partitioning between orthopyroxene and olivine: implications for lithosphere–asthenosphere boundary. Earth Planet Sci Lett 400:284–291CrossRefGoogle Scholar
  179. Schmerr N (2012) The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary. Science 335:1480–1483CrossRefGoogle Scholar
  180. Schnepf NR, Manoj C, Kuvshinov A, Toh H, Maus S (2014) Tidal signals in ocean-bottom magnetic measurements of the Northwestern Pacific: observation versus prediction. Geophys J Int 198(2):1096–1110CrossRefGoogle Scholar
  181. Schnepf N, Kuvshinov A, Sabaka T (2015) Can we probe the conductivity of the lithosphere and upper mantle using satellite tidal magnetic signals? Geophys Res Lett 42:3233–3239CrossRefGoogle Scholar
  182. Schock RN, Duba A, Shankland TJ (1989) Electric conduction in olivine. J Geophys Res 94:5829–5839CrossRefGoogle Scholar
  183. Schulgasser K (1976) Relationship between single-crystal and polycrystal electrical conductivity. J Appl Phys 47:1880–1886CrossRefGoogle Scholar
  184. Schulgasser K (1977) Bounds on the conductivity of statistically isotropic polycrystals. J Phys C: Solid State Phys 10:407–417CrossRefGoogle Scholar
  185. Seifert KF, Will G, Voigt R (1982) Electrical conductivity measurements on synthetic pyroxenes MgSiO3–FeSiO3 at high pressures and temperatures under defined thermodynamic conditions. In: Schreyer W (ed) High-pressure researches in geoscience. Schweizerbart’sche, Sttutgart, pp 419–432Google Scholar
  186. Selway K, Yi J, Karato S-I (2014) Water content of the Tanzanian lithosphere from magnetotelluric data: implications for cratonic growth and stability. Earth Planet Sci Lett 388:175–186CrossRefGoogle Scholar
  187. Semenov A, Kuvshinov A (2012) Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses: II. Data analysis and results. Geophys J Int 191:965–992Google Scholar
  188. Shapiro N, Ritzwoller M (2004) Thermodynamic constraints on seismic inversions. Geophys J Int 157(3):1175–1188CrossRefGoogle Scholar
  189. Shimizu H, Koyama T, Baba K, Utada H (2010) Revised 1-D mantle electrical conductivity structure beneath the north Pacific. Geophys J Int 180:1030–1048CrossRefGoogle Scholar
  190. Sifré D, Gardés E, Massuyeau M, Hashim L, Hier-Majumder S, Gaillard F (2014) Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509:81–85CrossRefGoogle Scholar
  191. Simmons NA, Forte AM, Boschi L, Grand SP (2010) GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J Geophys Res 115:B12310. doi: 10.1029/2010JB007631 CrossRefGoogle Scholar
  192. Siripunvaraporn W (2012) Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surv Geophys 33:5–27CrossRefGoogle Scholar
  193. Sobolev SV, Zeyen H, Stoll G, Werling F, Altherr R, Fuchs K (1996) Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett 139:147–163CrossRefGoogle Scholar
  194. Spangenberg E (1998) A fractal model for physical properties of porous rock: theoretical formulations and application to elastic properties. J Geophys Res 103:12269–12289CrossRefGoogle Scholar
  195. Spichak VV, Zakharova OK, Goidina AG (2013) A new conceptual model of the Icelandic crust in the Hengill geothermal area based on the indirect electromagnetic geothermometry. J Volcanol Geotherm Res 257:99–112CrossRefGoogle Scholar
  196. Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantle minerals—I. Physical properties. Geophys J Int 162:610–632CrossRefGoogle Scholar
  197. Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184:1180–1213CrossRefGoogle Scholar
  198. Tarits P, Mandéa M (2010) The heterogeneous electrical conductivity structure of the lower mantle. Phys Earth Planet Inter 183:115–125CrossRefGoogle Scholar
  199. ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine‐grained olivine: evidence for grain boundary transport. J Geophys Res 109:B06203. doi: 10.1029/2003JB002799 Google Scholar
  200. Tenner TJ, Hirschmann MM, Withers AC, Ardia P (2012) H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contrib Mineral Petrol 163:297–316CrossRefGoogle Scholar
  201. Thiel S, Heinson G (2013) Electrical conductors in Archean mantle—Result of plume interaction? Geophy Res Lett 40(12):2947–2952CrossRefGoogle Scholar
  202. Toffelmier DA, Tyburczy JA (2007) Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447:991–994CrossRefGoogle Scholar
  203. Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J Geophys Res 88:2413–2430CrossRefGoogle Scholar
  204. Velímský J (2013) Determination of three-dimensional distribution of electrical conductivity in the Earth’s mantle from Swarm satellite data: time-domain approach. Earth Planets Space 65:1239–1246CrossRefGoogle Scholar
  205. Verhoeven O et al (2009) Constraints on thermal state and composition of the Earths lower mantle from electromagnetic impedances and seismic data. J Geophys Res 114:B03302. doi: 10.1029/2008JB005678 CrossRefGoogle Scholar
  206. Vozar J, Jones AG, Fullea J, Agius MR, Lebedev S, Le Pape F, Wei W (2014) Integrated geophysical–petrological modeling of lithosphere-asthenosphere boundary in central Tibet using electromagnetic and seismic data. Geochem Geophys Geosyst 15:3965–3988CrossRefGoogle Scholar
  207. Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res 79:4003–4010CrossRefGoogle Scholar
  208. Wang Z, Ji S, Dresen G (1999) Hydrogen‐enhanced electrical conductivity of diopside crystals. Geophys Res Lett 26:799–802CrossRefGoogle Scholar
  209. Wang D, Mookherjee M, Xu Y, Karato S-I (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980CrossRefGoogle Scholar
  210. Wannamaker PE (2005) Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: fundamental response characteristics and implications for physicochemical state. Surv Geophys 26(6):733–765CrossRefGoogle Scholar
  211. Withers AC, Wood BJ, Carroll MR (1998) The OH content of pyrope at high pressure. Chem Geol 147:161–171CrossRefGoogle Scholar
  212. Xia Q-K, Sheng Y-M, Yang X-Z, Yu H-M (2005) Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China. Chem Geol 224:237–246CrossRefGoogle Scholar
  213. Xu Y, Shankland TJ (1999) Electrical conductivity of orthopyroxene and its high pressure phases. Geophys Res Lett 26:2645–2648CrossRefGoogle Scholar
  214. Xu Y, Shankland TJ, Poe BT (2000) Laboratory-based electrical conductivity in the Earth’s mantle. J Geophys Res 105:27865–27875CrossRefGoogle Scholar
  215. Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79CrossRefGoogle Scholar
  216. Yang X, McCammon C (2012) Fe3+-rich augite and high electrical conductivity in the deep lithosphere. Geology 40:131–134CrossRefGoogle Scholar
  217. Yang Y, Ritzwoller MH, Lin F-C, Moschetti MP, Shapiro NM (2008) Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J Geophys Res 113:B12310. doi: 10.1029/2008JB005833 CrossRefGoogle Scholar
  218. Yang X, Keppler H, McCammon C, Ni H, Xia Q, Fan Q (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res 116:B04208. doi: 10.1029/2010JB008010 Google Scholar
  219. Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 163:33–48CrossRefGoogle Scholar
  220. Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206CrossRefGoogle Scholar
  221. Yoshino T, Katsura T (2012) Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet Sci Lett 337:56–67CrossRefGoogle Scholar
  222. Yoshino T, Katsura T (2013) Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu Rev Earth Planet Sci 41:605–628CrossRefGoogle Scholar
  223. Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008a) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329CrossRefGoogle Scholar
  224. Yoshino T, Nishi M, Matsuzaki T, Yamazaki D, Katsura T (2008b) Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Inter 170:193–200CrossRefGoogle Scholar
  225. Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300CrossRefGoogle Scholar
  226. Yoshino T, Laumonier M, McIsaac E, Katsura T (2010) Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt fraction in the upper mantle. Earth Planet Sci Lett 295:593–602CrossRefGoogle Scholar
  227. Yuan H, Romanowicz B (2010) Lithospheric layering in the North American craton. Nature 466:1063–1068CrossRefGoogle Scholar
  228. Yue H, Chen YJ, Sandvol E, Ni J, Hearn T, Zhou S, Feng Y, Ge Z, Trujillo A, Wang Y (2012) Lithospheric and upper mantle structure of the northeastern Tibetan Plateau. J Geophys Res 117:B5. doi: 10.1029/2011JB008545 Google Scholar
  229. Zhang B, Yoshino T, Wu X, Matsuzaki T, Shan S, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357:11–20CrossRefGoogle Scholar
  230. Zhang B, Yoshino T, Yamazaki D, Manthilake G, Katsura T (2014) Electrical conductivity anisotropy in partially molten peridotite under shear deformation. Earth Planet Sci Lett 405:98–109CrossRefGoogle Scholar
  231. Zhao W, Mechie J, Brown L, Guo J, Haines S, Hearn T, Klemperer S, Ma Y, Meissner R, Nelson K (2001) Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys J Int 145:486–498CrossRefGoogle Scholar
  232. Zhao Y-H, Ginsberg SB, Kohlstedt DL (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Mineral Petrol 147:155–161CrossRefGoogle Scholar
  233. Zunino A, Khan A, Cupillard P, Mosegaard K (2016) Constitution and structure of Earth’s mantle: insights from mineral physics and seismology. In: Moorkamp M, Lelievre P, Linde N, Khan A (eds) Integrated imaging of the Earth. AGU Monograph, Wiley, HobokenGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Dublin Institute for Advanced StudiesDublin 2Ireland

Personalised recommendations