Surveys in Geophysics

, Volume 38, Issue 5, pp 1133–1169 | Cite as

Electromagnetic Monitoring of Hydraulic Fracturing: Relationship to Permeability, Seismicity, and Stress

  • Stephan ThielEmail author


Hydraulic fracking is a geoengineering application designed to enhance subsurface permeability to maximize fluid and gas flow. Fracking is commonly used in enhanced geothermal systems (EGS), tight shale gas, and coal seam gas (CSG) plays and in \(\hbox {CO}_2\) storage scenarios. Common monitoring methods include microseismics and mapping small earthquakes with great resolution associated with fracture opening at reservoir depth. Recently, electromagnetic (EM) methods have been employed in the field to provide an alternative way of direct detection of fluids as they are pumped in the ground. Surface magnetotelluric (MT) measurements across EGS show subtle yet detectable changes during fracking derived from time-lapse MT deployments. Changes are directional and are predominantly aligned with current stress field, dictating preferential fracture orientation, supported by microseismic monitoring of frack-related earthquakes. Modeling studies prior to the injection are crucial for survey design and feasibility of monitoring fracks. In particular, knowledge of sediment thickness plays a fundamental role in resolving subtle changes. Numerical forward modeling studies clearly favor some form of downhole measurement to enhance sensitivity; however, these have yet to be conclusively demonstrated in the field. Nevertheless, real surface-based monitoring examples do not necessarily replicate the expected magnitude of change derived from forward modeling and are larger than expected in some cases from EGS and CSG systems. It appears the injected fluid volume alone cannot account for the surface change in resistivity, but connectedness of pore space is also significantly enhanced and nonlinear. Recent numerical studies emphasize the importance of percolation threshold of the fracture network on both electrical resistivity and permeability, which may play an important role in accounting for temporal changes in surface EM measurements during hydraulic fracking.


Hydraulic fracking Electromagnetic monitoring Magnetotellurics Permeability Stress 



I would like to thank Ian Ferguson, and the other members of the Program Committee of the 23rd EM Induction Workshop for giving me the opportunity to present this review. I would also like to acknowledge numerous colleagues I worked with on this problem over the years, in particular Jared Peacock, who performed the pioneering analyses on the Paralana EGS. Subsequently, Yohannes Didana, Alison Kirkby, Jake MacFarlane, Graham Heinson, and many others greatly furthered research in this field. The South Australian Center for Geothermal Energy Research, guided by Martin Hand, supported a fellowship throughout the first few years of the EM monitoring research. Australian geothermal companies Petratherm Ltd and Geodynamics allowed access to their EGS plays, making this research possible in the first place. Paul Glover and an anonymous reviewer helped to improve this manuscript.


  1. Abdelfettah Y, Sailhac P, Larnier H, Matthey P-D, Schill E (2018) Continuous and time-lapse magnetotelluric monitoring of low volume injection at Rittershoffen geothermal project, northern Alsace–France. Geothermics 71:1–11CrossRefGoogle Scholar
  2. Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:B01208CrossRefGoogle Scholar
  3. Albaric J, Oye V, Langet N, Hasting M, Lecomte I, Iranpour K, Messeiller M, Reid P (2014) Monitoring of induced seismicity during the first geothermal reservoir stimulation at Paralana, Australia. Geothermics 52:120–131CrossRefGoogle Scholar
  4. Alexander B, Thiel S, Peacock J (2012) Application of evolutionary methods to 3D geoscience modelling. In: Proceedings of the fourteenth international conference on genetic and evolutionary computation conference, GECCO ’12, New York, NY, USA. ACM, pp 1039–1046. ISBN 978-1-4503-1177-9Google Scholar
  5. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62CrossRefGoogle Scholar
  6. Árnason K, Eysteinsson H, Hersir GP (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 39(1):13–34CrossRefGoogle Scholar
  7. Athy L (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull 14:1–24Google Scholar
  8. Ayling BF, Hogarth RA, Rose PE (2015) Tracer testing at the Habanero EGS site, central Australia. In: World geothermal congress, Melbourne, Australia, p 10Google Scholar
  9. Bahr K (1991) Geological noise in magnetotelluric data: a classification of distortion types. Phys Earth Planet Inter 66:24–38CrossRefGoogle Scholar
  10. Bahr K (1997) Electrical anisotropy and conductivity distribution functions of fractal random networks and of the crust: the scale effect of connectivity. Geophys J Int 130:649–660CrossRefGoogle Scholar
  11. Bailey A, King R, Holford S, Sage J, Backe G, Hand M (2014) Remote sensing of subsurface fractures in the Otway Basin, South Australia. J Geophys Res Solid Earth 119(8):6591–6612CrossRefGoogle Scholar
  12. Bakker J, Kuvshinov A, Samrock F, Geraskin A, Pankratov O (2015) Introducing inter-site phase tensors to suppress galvanic distortion in the telluric method. Earth Planets Space 67(1):160CrossRefGoogle Scholar
  13. Balfour NJ, Cummins PR, Pilia S, Love D (2015) Localization of intraplate deformation through fluid-assisted faulting in the lower-crust: the flinders ranges, South Australia. Tectonophysics 655:97–106CrossRefGoogle Scholar
  14. Bauer K, Muñoz G, Moeck I (2012) Pattern recognition and lithological interpretation of collocated seismic and magnetotelluric models using self-organizing maps. Geophys J Int 189(2):984–998CrossRefGoogle Scholar
  15. Bertrand EA, Caldwell TG, Hill GJ, Bennie SL, Soengkono S (2013) Magnetotelluric imaging of the Ohaaki geothermal system, New Zealand: implications for locating basement permeability. J Volcanol Geotherm Res 268:36–45CrossRefGoogle Scholar
  16. Bibby HM, Caldwell TG, Brown C (2005) Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys J Int 163:915–930CrossRefGoogle Scholar
  17. Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39(3):347–383CrossRefGoogle Scholar
  18. Booker JR (2014) The magnetotelluric phase tensor: a critical review. Surv Geophys 35(1):7–40CrossRefGoogle Scholar
  19. Börner JH, Herdegen V, Repke J-U, Spitzer K (2013) The impact of CO2 on the electrical properties of water bearing porous media—laboratory experiments with respect to carbon capture and storage. Geophys Prospect 61:446–460CrossRefGoogle Scholar
  20. Börner JH, Bär M, Spitzer K (2015a) Electromagnetic methods for exploration and monitoring of enhanced geothermal systems: a virtual experiment. Geothermics 55:78–87CrossRefGoogle Scholar
  21. Börner JH, Wang F, Weißflog J, Bär M, Görz I, Spitzer K (2015b) Multi-method virtual electromagnetic experiments for developing suitable monitoring designs: a fictitious CO$_2$ sequestration scenario in Northern Germany. Geophys Prospect 63(6):1430–1449CrossRefGoogle Scholar
  22. Brown SR (1989) Transport of fluid and electric current through a single fracture. J Geophys Res Solid Earth 94(B7):9429–9438CrossRefGoogle Scholar
  23. Brown SR (1995) Simple mathematical model of a rough fracture. J Geophys Res Solid Earth 100(B4):5941–5952CrossRefGoogle Scholar
  24. Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 91(B5):4939CrossRefGoogle Scholar
  25. Brugger J, Long N, McPhail DC, Plimer I (2005) An active amagmatic hydrothermal system: the Paralana hot springs, northern flinders ranges, South Australia. Chem Geol 222(1–2):35–64CrossRefGoogle Scholar
  26. Cagniard L (1953) Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics 18:605–635CrossRefGoogle Scholar
  27. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028CrossRefGoogle Scholar
  28. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469CrossRefGoogle Scholar
  29. Chave AD, Jones AG (2012) The magnetotelluric method: theory and practice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Chesworth W (ed) (2008) Encyclopedia of soil science. Springer, NetherlandsGoogle Scholar
  31. Commer M, Newman GA (2009) Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion. Geophys J Int 178(3):1305–1316CrossRefGoogle Scholar
  32. Commer M, Doetsch J, Dafflon B, Yuxin W, Daley TM, Hubbard SS (2016) Time-lapse 3-D electrical resistance tomography inversion for crosswell monitoring of dissolved and supercritical CO$_2$ flow at two field sites: Escatawpa and Cranfield, Mississippi, USA. Int J Greenhouse Gas Control 49:297–311CrossRefGoogle Scholar
  33. Constable S, Weiss CJ (2006) Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling. Geophysics 71:G43–G51CrossRefGoogle Scholar
  34. Constable S, Key K, Lewis L (2009) Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data. Geophys J Int 176(2):431–442CrossRefGoogle Scholar
  35. Dastidar R, Sondergeld CH, Rai CS (2007) An improved empirical permeability estimator from mercury injection for tight clastic rocks. Petrophysics 48(3)Google Scholar
  36. de Groot Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55:1613–1624CrossRefGoogle Scholar
  37. Didana YL, Thiel S, Heinson G (2014) Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia. Geophys Res Lett 41(9):3089–3095CrossRefGoogle Scholar
  38. Didana YL, Thiel S, Heinson G (2015) Three dimensional conductivity model of the Tendaho high enthalpy geothermal field, NE Ethiopia. J Volcanol Geotherm Res 290:53–62CrossRefGoogle Scholar
  39. Didana Y, Heinson G, Thiel S (2016) Magnetotelluric monitoring of hydraulic fracture stimulation at the Habanero Enhanced Geothermal System, Cooper Basin, South Australia. In: 23rd electromagnetic induction workshop, Chiang Mai, ThailandGoogle Scholar
  40. Didana YL, Heinson G, Thiel S, Krieger L (2017) Magnetotelluric monitoring of permeability enhancement at enhanced geothermal system project. Geothermics 66:23–38CrossRefGoogle Scholar
  41. Egbert GD, Kelbert A (2012) Computational recipes for electromagnetic inverse problems. Geophys J Int 189(1):251–267CrossRefGoogle Scholar
  42. Garg SK, Pritchett JW, Wannamaker PE, Combs J (2007) Characterization of geothermal reservoirs with electrical surveys: Beowawe geothermal field. Geothermics 36(6):487–517CrossRefGoogle Scholar
  43. Genter A, Guillou-Frottier L, Feybesse JL, Nicol N, Dezayes C, Schwartz S (2003) Typology of potential hot fractured rock resources in Europe. Geothermics 32(46):701–710CrossRefGoogle Scholar
  44. Geothermal Technologies Program (2008) An evaluation of enhanced geothermal systems technology. Technical report, U.S. Department of Energy (DoE)Google Scholar
  45. Gérard A, Genter A, Kohl T, Lutz P, Rose P, Rummel F (2006) The deep enhanced geothermal system (EGS) project at Soultz-sous-Forêts (Alsace, France). Geothermics 35(56):473–483CrossRefGoogle Scholar
  46. Glover P (2009) What is the cementation exponent? A new interpretation. Lead Edge 28(1):82–85CrossRefGoogle Scholar
  47. Glover PWJ (2010) A generalized Archie’s law for n phases. Geophysics 75(6):E247–E265CrossRefGoogle Scholar
  48. Glover PWJ (2015) Geophysical properties of the near surface earth: electrical properties. In: Schubert G (ed) Treatise on geophysics. Elsevier, Amsterdam, pp 89–137Google Scholar
  49. Glover PWJ, Hayashi K (1997) Modelling fluid flow in rough fractures: application to the Hachimantai geothermal HDR test site. Phys Chem Earth 22(1–2):5–11CrossRefGoogle Scholar
  50. Glover PW, Walker E (2009) Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics 74(1):E17–E29CrossRefGoogle Scholar
  51. Glover PWJ, Matsuki K, Hikima R, Hayashi K (1998a) Fluid flow in synthetic rough fractures and application to the hachimantai geothermal hot dry rock test site. J Geophys Res Solid Earth 103(B5):9621–9635CrossRefGoogle Scholar
  52. Glover PWJ, Matsuki K, Hikima R, Hayashi K (1998b) Synthetic rough fractures in rocks. J Geophys Res Solid Earth 103(B5):9609–9620CrossRefGoogle Scholar
  53. Glover PWJ, Hole MJ, Pous J (2000a) A modified Archie’s law for two conducting phases. Earth Planet Sci Lett 180(3–4):369–383CrossRefGoogle Scholar
  54. Glover PWJ, Pous J, Queralt P, Muoz J-A, Liesa M, Hole MJ (2000b) Integrated two-dimensional lithospheric conductivity modelling in the pyrenees using field-scale and laboratory measurements. Earth Planet Sci Lett 178(1–2):59–72CrossRefGoogle Scholar
  55. Glover PW, Zadjali II, Frew KA (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach. Geophysics 71(4):F49–F60. doi: 10.1190/1.2216930 CrossRefGoogle Scholar
  56. Goertz-Allmann BP, Goertz A, Wiemer S (2011) Stress drop variations of induced earthquakes at the basel geothermal site. Geophys Res Lett 38(9):L09308CrossRefGoogle Scholar
  57. Grayver AV, Streich R, Ritter O (2014) 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO$_2$ storage formation. Geophysics 79(2):E101–E114CrossRefGoogle Scholar
  58. Groom RW, Bahr K (1992) Corrections for near surface effects: decomposition of the magnetotelluric impedance tensor and scaling corrections for regional resistivities: a tutorial. Surv Geophys 13:341–379CrossRefGoogle Scholar
  59. Harinarayana T, Abdul Azeez KK, Murthy DN, Veeraswamy K, Eknath Rao SP, Manoj C, Naganjaneyulu K (2006) Exploration of geothermal structure in Puga geothermal field, Ladakh Himalayas, India by magnetotelluric studies. J Appl Geophys 58:280–295CrossRefGoogle Scholar
  60. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131CrossRefGoogle Scholar
  61. He Z, Hu Z, Gao Y, He L, Meng C, Yang L (2015) Field test of monitoring gas reservoir development using time-lapse continuous electromagnetic profile method. Geophysics 80(2):WA127–WA134CrossRefGoogle Scholar
  62. Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys J Int 173(2):740–750CrossRefGoogle Scholar
  63. Heise W, Caldwell TG, Bibby HM, Bennie SL (2010) Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand. Geophys Res Lett 37(10):L10301CrossRefGoogle Scholar
  64. Hidajat I, Mohanty KK, Flaum M, Hirasaki G (2004) Study of vuggy carbonates using NMR and X-ray CT scanning. SPE Reserv Eval Eng 7(05):365–377CrossRefGoogle Scholar
  65. Holford SP, Hillis RR, Hand M, Sandiford M (2011) Thermal weakening localizes intraplate deformation along the southern Australian continental margin. Earth Planet Sci Lett 305:207–214CrossRefGoogle Scholar
  66. Holl H, Barton C (2015) Habanero field-structure and state of stress. In: Proceedings the world geothermal congress, Melbourne, Australia, pp 19–25Google Scholar
  67. Huet CC, Rushing JA, Newsham KE, Blasingame TA (2005) A modified purcell/burdine model for estimating absolute permeability from mercury-injection capillary pressure data. In: International petroleum technology conferenceGoogle Scholar
  68. Ishibashi T, Watanabe N, Hirano N, Okamoto A, Tsuchiya N (2015) Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation. J Geophys Res Solid Earth 120(1):106–124CrossRefGoogle Scholar
  69. Jones AG (1988) Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics 53:967–978CrossRefGoogle Scholar
  70. Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34(11):8179–8181CrossRefGoogle Scholar
  71. Katz AJ, Thompson AH (1987) Prediction of rock electrical conductivity from mercury injection measurements. J Geophys Res 92(B1):599CrossRefGoogle Scholar
  72. Kelbert A, Meqbel N, Egbert GD, Tandon K (2014) Modem: a modular system for inversion of electromagnetic geophysical data. Comput Geosci 66:40–53CrossRefGoogle Scholar
  73. Key K (2016) MARE2dem: a 2-d inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys J Int 207(1):571–588CrossRefGoogle Scholar
  74. Key K, Ovall J (2011) A parallel goal-oriented adaptive finite element method for 2.5-d electromagnetic modelling. Geophys J Int 186(1):137–154CrossRefGoogle Scholar
  75. Kirkby A, Heinson G (2017) Three-dimensional resistor network modeling of the resistivity and permeability of fractured rocks. J Geophys Res Solid Earth 122(4):2653–2669CrossRefGoogle Scholar
  76. Kirkby A, Heinson G, Holford S, Thiel S (2015) Mapping fractures using 1d anisotropic modelling of magnetotelluric data: a case study from the Otway Basin, Victoria, Australia. Geophys J Int 201(3):1961–1976CrossRefGoogle Scholar
  77. Kirkby A, Heinson G, Krieger L (2016) Relating permeability and electrical resistivity in fractures using random resistor network models. J Geophys Res Solid Earth 121(3):1546–1564CrossRefGoogle Scholar
  78. Kolodzie S (1980) Analysis of pore throat size and use Of the Waxman–Smits equation to determine OOIP in spindle field, Colorado. In: SPE Annual technical conference and exhibition. Society of Petroleum EngineersGoogle Scholar
  79. Kristinsdóttir LH, Flóvenz ÓG, Árnason K, Bruhn D, Milsch H, Spangenberg E, Kulenkampff J (2010) Electrical conductivity and P-wave velocity in rock samples from high-temperature Icelandic geothermal fields. Geothermics 39(1):94–105CrossRefGoogle Scholar
  80. Laloy E, Linde N, Vrugt JA (2012) Mass conservative three-dimensional water tracer distribution from Markov chain Monte Carlo inversion of time-lapse ground-penetrating radar data. Water Resour Res 48(7):W07510Google Scholar
  81. Ledo J, Gabas A, Marcuello A (2002) Static shift levelling using geomagnetic transfer functions. Earth Planets Space 54:493–498CrossRefGoogle Scholar
  82. Leroy P, Revil A (2004) A triple-layer model of the surface electrochemical properties of clay minerals. J Colloid Interface Sci 270(2):371–380CrossRefGoogle Scholar
  83. Liddell M, Unsworth M, Pek J (2016) Magnetotelluric imaging of anisotropic crust near Fort McMurray, Alberta: implications for engineered geothermal system development. Geophys J Int 205(3):1365–1381CrossRefGoogle Scholar
  84. MacFarlane J, Thiel S, Pek J, Peacock J, Heinson G (2014) Characterisation of induced fracture networks within an enhanced geothermal system using anisotropic electromagnetic modelling. J Volcanol Geotherm Res 288:1–7CrossRefGoogle Scholar
  85. Mackie RL, Madden TR, Wannamaker PE (1993) Three-dimensional magnetotelluric modeling using difference equations—theory and comparisons to integral equation solutions. Geophysics 58:215–226CrossRefGoogle Scholar
  86. McNeice GW, Jones AG (2001) Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics 66:158–173CrossRefGoogle Scholar
  87. Miensopust MP, Jones AG, Hersir GP, Vilhjlmsson AM (2014) The Eyjafjallajkull volcanic system, Iceland: insights from electromagnetic measurements. Geophys J Int 199(2):1187–1204CrossRefGoogle Scholar
  88. Mitra A, Harpalani S, Liu S (2012) Laboratory measurement and modeling of coal permeability with continued methane production: Part 1—laboratory results. Fuel 94:110–116CrossRefGoogle Scholar
  89. Moorkamp M (2017) Integrating electromagnetic data with other geophysical observations for enhanced imaging of the earth. Surv Geophys. doi: 10.1007/s10712-017-9413-7
  90. Muñoz G (2014) Exploring for geothermal resources with electromagnetic methods. Surv Geophys 35(1):101–122CrossRefGoogle Scholar
  91. Muñoz G, Ritter O (2013) Pseudo-remote reference processing of magnetotelluric data: a fast and efficient data acquisition scheme for local arrays. Geophys Prospect 61:300–316CrossRefGoogle Scholar
  92. Muñoz G, Ritter O, Moeck I (2010a) A target-oriented magnetotelluric inversion approach for characterizing the low enthalpy Groß Schönebeck geothermal reservoir. Geophys J Int 183(3):1199–1215CrossRefGoogle Scholar
  93. Muñoz G, Bauer K, Moeck I, Schulze A, Ritter O (2010b) Exploring the Groß Schönebeck (Germany) geothermal site using a statistical joint interpretation of magnetotelluric and seismic tomography models. Geothermics 39(1):35–45CrossRefGoogle Scholar
  94. Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310CrossRefGoogle Scholar
  95. Neumann N, Sandiford M, Foden J (2000) Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth Planet Sci Lett 183(1–2):107–120CrossRefGoogle Scholar
  96. Ogaya X, Ledo J, Queralt P, Marcuello Á, Quinta A (2013) First geoelectrical image of the subsurface of the Hontomín site (Spain) for CO$_2$ geological storage: a magnetotelluric 2D characterization. Int J Greenhouse Gas Control 13:168–179CrossRefGoogle Scholar
  97. Ogaya X, Ledo J, Queralt P, Jones AG, Marcuello Á (2016) A layer stripping approach for monitoring resistivity variations using surface magnetotelluric responses. J Appl Geophys 132:100–115CrossRefGoogle Scholar
  98. Ogilvie SR, Isakov E, Glover PWJ (2006) Fluid flow through rough fractures in rocks. II: a new matching model for rough rock fractures. Earth Planet Sci Lett 241(34):454–465CrossRefGoogle Scholar
  99. Orange AS (1989) Magnetotelluric exploration for hydrocarbons. IEEE Proc 77:287–317CrossRefGoogle Scholar
  100. Orange A, Key K, Constable S (2009) The feasibility of reservoir monitoring using time-lapse marine CSEM. Geophysics 74(2):F21–F29CrossRefGoogle Scholar
  101. Peacock JR, Thiel S, Reid P, Heinson G (2012) Magnetotelluric monitoring of a fluid injection: example from an enhanced geothermal system. Geophys Res Lett 39(18):L18403CrossRefGoogle Scholar
  102. Peacock J, Thiel S, Heinson G, Reid P (2013) Time-lapse magnetotelluric monitoring of an enhanced geothermal system. Geophysics 78(3):B121–B130CrossRefGoogle Scholar
  103. Pearson C (1981) The relationship between microseismicity and high pore pressures during hydraulic stimulation experiments in low permeability granitic rocks. J Geophys Res Solid Earth 86(B9):7855–7864CrossRefGoogle Scholar
  104. Pellerin L, Hohmann GW (1990) Transient electromagnetic inversion: a remedy for magnetotelluric static shifts. Geophysics 55:1242–1250CrossRefGoogle Scholar
  105. Phillips WS, Rutledge JT, House LS, Fehler MC (2002) Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: six case studies. Pure Appl Geophys 159(1):345–369CrossRefGoogle Scholar
  106. Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys 35(1):41–84CrossRefGoogle Scholar
  107. Randolph JB, Saar MO (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett 38(10):L10401CrossRefGoogle Scholar
  108. Rashid F, Glover PWJ, Lorinczi P, Hussein D, Collier R, Lawrence J (2015) Permeability prediction in tight carbonate rocks using capillary pressure measurements. Mar Pet Geol 68:536–550. doi: 10.1016/j.marpetgeo.2015.10.005 CrossRefGoogle Scholar
  109. Rees N, Carter S, Heinson G, Krieger L (2016a) Monitoring shale gas resources in the Cooper Basin using magnetotellurics. Geophysics 81(6):A13–A16CrossRefGoogle Scholar
  110. Rees N, Heinson G, Krieger L (2016b) Magnetotelluric monitoring of coal seam gas depressurisation. Geophysics 81(6):E423–E432CrossRefGoogle Scholar
  111. Rees N, Carter S, Heinson G, Krieger L, Conway D, Boren G, Matthews C (2016c) Magnetotelluric monitoring of coal-seam gas and shale-gas resource development in Australia. Lead Edge 35(1):64–70CrossRefGoogle Scholar
  112. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66:174–187CrossRefGoogle Scholar
  113. Rosas-Carbajal M, Linde N, Peacock J, Zyserman FI, Kalscheuer T, Thiel S (2015) Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system. Geophys J Int 203(3):1946–1960CrossRefGoogle Scholar
  114. Sambridge M, Mosegaard K (2002) Monte carlo methods in geophysical inverse problems. Rev Geophys 40(3):3-1–3-29CrossRefGoogle Scholar
  115. Schwartz LM, Sen PN, Johnson DL (1989) Influence of rough surfaces on electrolytic conduction in porous media. Phys Rev B 40(4):2450–2458. doi: 10.1103/physrevb.40.2450 CrossRefGoogle Scholar
  116. Slater L (2007) Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries: a review. Surv Geophys 28:169–197CrossRefGoogle Scholar
  117. Spichak V, Manzella A (2009) Electromagnetic sounding of geothermal zones. J Appl Geophys 68(4):459–478CrossRefGoogle Scholar
  118. Spitzer K (2001) Magnetotelluric static shift and direct current sensitivity. Geophys J Int 144:289–289CrossRefGoogle Scholar
  119. Streich R (2016) Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv Geophys 37(1):47–80CrossRefGoogle Scholar
  120. Streich R, Becken M (2011) Sensitivity of controlled-source electromagnetic fields in planarly layered media. Geophys J Int 187(2):705–728CrossRefGoogle Scholar
  121. Streich R, Becken M, Ritter O (2010) Imaging of CO2 storage sites, geothermal reservoirs, and gas shales using controlled-source magnetotellurics: modeling studies. Chemie der Erde Geochemistry 70:63–75CrossRefGoogle Scholar
  122. Swanson BF (1981) A simple correlation between permeabilities and mercury capillary pressures. J Pet Technol 33(12):2498–2504. doi: 10.2118/8234-pa CrossRefGoogle Scholar
  123. Telford WM, Geldart LP, Sheriff RE, Keys DA (1976) Applied geophysics. Cambridge University Press, CambridgeGoogle Scholar
  124. Thiel S, Soeffky P, Krieger L, Regenauer-Lieb K, Peacock J, Heinson G (2016) Conductivity response to intraplate deformation: evidence for metamorphic devolatilization and crustal-scale fluid focusing. Geophys Res Lett 43(21):11,236–11,244CrossRefGoogle Scholar
  125. Thompson AH, Katz AJ, Krohn CE (1987) The microgeometry and transport properties of sedimentary rock. Adv Phys 36(5):625–694CrossRefGoogle Scholar
  126. Tietze K, Ritter O, Veeken P (2015) Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole-to-surface configuration. Geophys Prospect 63(6):1468–1490CrossRefGoogle Scholar
  127. Tikhonov AN (1950) The determination of the electrical properties of deep layers of the Earth’s crust. Dokl Acad Nauk SSR 73:295–297Google Scholar
  128. Uyeshima M (2007) EM monitoring of crustal processes including the use of the network-MT observations. Surv Geophys 28:199–237CrossRefGoogle Scholar
  129. Vogt C, Kosack C, Marquart G (2012) Stochastic inversion of the tracer experiment of the enhanced geothermal system demonstration reservoir in Soultz-sous-Forêts: revealing pathways and estimating permeability distribution. Geothermics 42:1–12CrossRefGoogle Scholar
  130. Wait JR (1954) On the relation between telluric currents and the earth’s magnetic field. Geophysics 19:281–289CrossRefGoogle Scholar
  131. Walker E, Glover PWJ (2010) Permeability models of porous media: characteristic length scales, scaling constants and time-dependent electrokinetic coupling. Geophysics 75(6):E235–E246CrossRefGoogle Scholar
  132. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283. doi: 10.1103/physrev.17.273 CrossRefGoogle Scholar
  133. Weaver JT, Agarwal AK, Lilley FEM (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141:321–321CrossRefGoogle Scholar
  134. Weckmann U, Ritter O, Haak V (2003) Images of the magnetotelluric apparent resistivity tensor. Geophys J Int 155(2):456–468CrossRefGoogle Scholar
  135. Weidelt P (1972) The inverse problem of geomagnetic induction. Zeitschrift fr Geophysik 38:257–289Google Scholar
  136. Weidelt P (2007) Guided waves in marine CSEM. Geophys J Int 171(1):153–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Geological Survey of South AustraliaAdelaideAustralia
  2. 2.School of Physical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations